
Improving DNN Inference Throughput Using Practical, Per-Input Compute Adaptation

Anand Iyer† Mingyu Guan† Yinwei Dai§ Rui Pan§ Swapnil Gandhi∗ Ravi Netravali§
†Georgia Institute of Technology §Princeton University ∗Stanford University

Abstract
Machine learning inference platforms continue to face high
request rates and strict latency constraints. Existing solutions
largely focus on compressing models to substantially lower
compute costs (and time) with mild accuracy degradations.
This paper explores an alternate (but complementary) tech-
nique that trades off accuracy and resource costs on a per-
input granularity: early exit models, which selectively allow
certain inputs to exit a model from an intermediate layer.
Though intuitive, early exits face fundamental deployment
challenges, largely owing to the effects that exiting inputs
have on batch size (and resource utilization) throughout model
execution. We present 𝐸3, the first system that makes early
exit models practical for realistic inference deployments. Our
key insight is to split and replicate blocks of layers in models
in a manner that maintains a constant batch size throughout
execution, all the while accounting for resource requirements
and communication overheads. Evaluations with NLP and
vision models show that 𝐸3 can deliver up to 1.74× improve-
ment in goodput (for a fixed cost) or 1.78× reduction in cost
(for a fixed goodput). Additionally, 𝐸3’s goodput wins gen-
eralize to autoregressive LLMs (2.8-3.8×) and compressed
models (1.67×).

1 Introduction
Machine Learning (ML) inference, or the process of deploy-
ing trained models to serve queries, has become a dominant
and critical workload that underlies many real-world appli-
cations [34, 54]. Indeed, industry-scale inference systems
are already presented with trillions of queries per day (i.e.,
1000s per second) [6]), with the numbers continuing to rise
as ML-powered services grow in number and popularity. Cou-
pled with the steadily increasing sizes of deep neural net-
works [12, 41, 42, 65, 72], compute overheads and limitations
are a paramount concern for inference systems today.

Given the practical importance of inference workloads, nu-
merous techniques have been developed to lower compute
overheads for serving by compressing models (§2), e.g., dis-
tillation [36, 43], pruning [24, 27], and quantization [62]. For

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SOSP ’24, November 4–6, 2024, Austin, TX, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1251-7/24/11.
https://doi.org/10.1145/3694715.3695978

instance, DistilBERT [57], a distilled version of the popular
language model BERT [23], is ≈40% smaller and 60% faster.
Yet, compression alone is not enough. New paradigms such as
auto-regressive generative models inflate compute by mandat-
ing multiple passes through a model per input. Moreover, as
model sizes grow, so too do their compressed variants when
needing to maintain acceptable accuracies [46].

This paper studies complementary pathways to further
tame compute overheads in large-scale ML serving via finer-
grained compression. More specifically, an approach that has
recently garnered attention in the ML community is early-
exit networks [32, 49, 50, 59, 68–70, 73] (EE-DNNs), which
propose the idea that inputs to a DNN can exit at intermedi-
ate model layers, rather than having to strictly traverse the
full model. Easy inputs can safely (accuracy-wise) exit early,
while hard inputs can continue through to the end to leverage
the full expressiveness of the original model. In contrast to
the above techniques, EE-DNNs adapt computation on a per
input basis, rather than only compressing models for all in-
puts. Put differently, EE-DNNs can reduce computation in
a model (including compressed ones) to the lowest amount
necessary to accurately respond to each input; coarser, model-
level compression alone often performs more compute than
necessary for many inputs (§2).

Despite their intuitive benefits, several key drawbacks (§2.3)
have precluded the widespread deployment of EE-DNNs, in-
cluding in our own large-scale production service where EEs
afforded acceptable accuracy drops where compression could
not (§2.4). First and foremost, EE-DNNs are fundamentally
at odds with input batching – the predominant technique used
to boost resource utilization and throughput for ML work-
loads [20, 29, 44, 61]. The issue is that the very technique
that enables EE-DNNs to deliver throughput benefits – i.e.,
allowing inputs to exit at intermediate model layers – results
in shrunken batches for later model layers (and thus, resource
underutilization). Our results highlight how this inefficiency
can lead to EE-DNNs degrading performance; it is for this
reason that state-of-the-art early-exit systems disable the use
of batching altogether, a non-starter for real-world deploy-
ment [49, 59, 68–70, 73]. Second, the exits that EE-DNNs
add to the original models can impose non-negligible com-
pute overheads, especially as model complexity grows and
for inputs that must traverse most of the model.

We present 𝐸3,1 a system that makes EE-DNNs practi-
cal, and leverages them to enable high-throughput and cost-
effective inference across diverse deployment settings. The
key idea behind 𝐸3 is simple: maintain a constant batch size

1for Efficient Early-Exits.

https://doi.org/10.1145/3694715.3695978

throughout the execution of an EE-DNN. At a high level, 𝐸3

accomplishes this by first identifying “splits” (i.e., contigu-
ous blocks of layers) in EE-DNNs that are expected to yield
constant batch size outputs, and then replicating certain splits
so as to keep the overall batch size constant throughout the
model. Yet, realizing this simple idea in realistic scenarios
involves several challenges, which 𝐸3 tackles using two key
components.

First, to handle the variability in workloads that alter the
usage and utility of each exit in an EE-DNN over time, 𝐸3 pro-
poses an online batch profiling estimation technique (§3.1).
𝐸3’s profiler is based on ARIMA [37] and characterizes how
batch size shrinks as model execution progresses. This in-
formation guides 𝐸3’s splitting strategy, and also presents
opportunities to deactivate unnecessary exits to keep com-
pute overheads low. Importantly, although 𝐸3’s batch profiles
closely match reality for our workloads, it only uses them as
a guide and does not rely on perfect predictions (§5).

Second, based on the observation that realistic deployments
contain multiple GPUs, 𝐸3 incorporates an inter-layer model
parallel scheduler that judiciously runs splits in a parallel
fashion to best utilize the available resources. While model
parallelism is typically reserved only for large models that
fail to fit in a single GPU, 𝐸3 uniquely shows how this para-
digm can help address the EE-DNN batching challenge. The
idea is that multiple GPUs grant 𝐸3 additional flexibility for
running splits (e.g., sequential vs. parallel), and wins from
careful exiting can often outweigh (and alleviate) cross-GPU
communication overheads.(§3.2.1)

Along these lines, 𝐸3 formulates its model parallel sched-
uler as a Dynamic Programming (DP)-based optimization
that takes as input a set of compute/network resources, an
EE-DNN, and the output of 𝐸3’s batch profiler. 𝐸3’s scheduler
then considers the resource needs, run time, and communica-
tion overheads imposed by each potential split to determine
the optimal set of splits to use and the batch size for each
that maximizes goodput subject to SLO constraints (§3.2).
𝐸3 further reduces communication overheads by leveraging
pipelining to overlap computation and communication across
batches. Moreover, we highlight that the running of splits with
different batch sizes presents new opportunities to favorably
leverage heterogeneous hardware. We show how 𝐸3’s gen-
eral DP formulation can be naturally extended to maximize
throughput and cost reductions in such settings.

We implemented 𝐸3 in PyTorch [8] (§4), and evaluated it
across a variety of recent language and vision EE-DNNs and
stock models, multiple workloads, and clusters with up to
46 GPUs. Across these scenarios, 𝐸3 achieves up to 1.74×
higher goodput for the same compute cost, or reduces the
compute cost by up to 1.78× for a fixed goodput, all relative
to state-of-the-art EE-DNNs. Importantly, 𝐸3’s goodput wins
generalize to autoregressive LLMs (2.8-3.8×) and compressed
models (1.67×). Lastly, our results show how 𝐸3 empowers
early exits to deliver on their potential benefits, enabling

EE-DNNs to deliver 32-58% higher throughputs than their
corresponding non-EE models. Crucially, despite their ramp
overheads, EE-DNNs with 𝐸3 yield comparable tail latencies,
with substantial latency improvements at all other quartiles
(§5).

2 Background
We start with a background on model compression techniques.
We then describe the value that early exits bring to both
uncompressed and compressed models, and the challenges
(based on our production experience) associated with making
EE-DNNs practical.

2.1 Model Compression Approaches

In striving for improved inference accuracy, ML models
have steadily increased in complexity, with recent model ver-
sions incorporating more layers and parameters. For instance,
BERT-LARGE has 340 million parameters, while GPT-2 and
GPT-3 have 1.5 and 175 billion [17]. Unfortunately, even with
the best accelerators, complex models are often incapable of
satisfying the strict SLOs and high request rates seen in prac-
tice for user-facing applications [72]. Model compression has
sought to resolve this problem by proposing techniques to
replace the original, complex model with a simpler one with-
out a significant reduction in accuracy. The insight behind
compression is that only a fraction of the original model’s
predictive power is required for many inference tasks.

The most common compression techniques include prun-
ing, quantization, and distillation [18, 27, 36, 62]; we discuss
other optimizations in §6. Pruning is based on the notion that
models are often over-parameterized. Hence, though com-
putationally expensive [24, 27], identifying and removing
the unnecessary parameters can result in a smaller model.
In contrast, quantization reduces model size by employing
lower-precision arithmetic; manipulating weights in this man-
ner reduces the amount of storage necessary to house them.
For instance, replacing 32-bit weights with a binarization
process [62] can reduce model size by 32×.

Knowledge distillation [36, 43] has emerged as a popular
compression technique in which a smaller model is trained
using knowledge distilled from the original model. Here, the
smaller model, referred to as the student model is trained
to mimic the larger model, referred to as the teacher model,
using the output of the teacher. At a high level, the student
model learns the function the teacher has learned from its
training, aided by the teacher. Several methods of distillation
have been proposed, including collaborative learning and
assistant models, each with its own pros and cons [28, 52].

Despite their promising benefits, all of these compression
techniques leave compute reduction opportunities on the table
by operating at a model level. Specifically, they fail to cap-
italize on unique opportunities that individual inputs bring,
and instead apply compression to the full model in a way that
caters to all inputs.

Ramp1

La
ye

r 1Batch
size 16

1 sample
exits early

La
ye

r 2
2 samples
exit early

15
 s

am
pl

es
co

nt
in

ue

13
 s

am
pl

es
co

nt
in

ue
…

La
ye

r 1
2

Remaining
 samples exit

Original model

Ramp2 Ramp12

…

…

Figure 1. Early-exit DNNs allow inputs to exit after intermediate
layers, thus reducing computation.

80 82 84 86 88 90 92
Accuracy (%)

SST-2

QNLI

BERT BERT-EE DistilBERT DistilBERT-EE

40 50 60 70 80 90 100
Average Latency (%)

Figure 2. Early exits bring large compute (and latency) savings
with only mild accuracy losses, including when running atop
distilled models. All results use batch size 1, and latency results
are normalized to those of vanilla BERT. Each bar shows the
average with error bars spanning a standard deviation across
five runs.

2.2 Early-Exit Networks

Early-exit networks (fig. 1) present a path-way for finer-
grained compression, whereby computation overheads and
accuracy are traded off using per-input decisions. More specif-
ically, early-exit networks (EE-DNNs) are rooted in the idea
that different inputs utilize the predictive power of a model to
different degrees. The hardness of inputs in a workload varies,
and EE-DNNs enable compute overheads to vary accordingly
without substantial accuracy loss; hard inputs can use the
original model’s full predictive power (traversing all of its
layers), while easy inputs may use only some layers before
exiting with a prediction result. Importantly, since compute
overheads are directly proportional to the number of layers ex-
ecuted in a model, exiting earlier translates to lower resource
costs, higher throughput, and faster results.

An ideal early-exit network would, in theory, incur the
optimal amount of computation for any given input. However,
in practice, a decision to exit early has to be made at each
exit point (often referred to as a ramp). ML researchers have
proposed many forms of EE-DNNs [32, 49, 50, 59, 64, 68–
70, 73] with various exiting techniques. The simplest ramp is
an entropy computation that provides the confidence of the
prediction at that point. More complex architectures include
counter-based mechanisms, which count the confidence of the

0
2
4
6
8

Ba
tc

h
siz

e

1 2 3 4 5 6 7 8 9 10 11 12
Ramp ID

0
25
50
75

100

GP
U

Ut
il

(%
)

QNLI
SST-2

Figure 3. Samples in a batch exit DeeBERT [69] early as they
pass through its ramps, which causes severe resource underuti-
lization.

last 𝑘 layers before deciding to exit, and neural network-based
ramps which take as input the output from earlier layers.

To better understand the compute savings and accuracy
implications of early exits, we performed experiments using
four variants of the popular BERT NLP model [23]: BERT,
BERT-EE (a version of BERT that incorporates early ex-
its [69]), DistilBERT (a distilled version of BERT [57]), and
DistilBERT-EE (a version of DistilBERT that incorporates
early exits). Unlike the other three variants, an off-the-shelf
version of DistilBERT-EE has yet to be proposed. Thus, we
developed it in house, using the same methodology that was
employed to develop BERT-EE from BERT in [69], i.e., after
each encoder block, adding an exit ramp with a bertpooler,
a dropout layer, and a fully connected layer. Our evaluation
considered two commonly used language datasets, SST-2 and
QNLI [2]. Results (fig. 2) point to the following takeaways:
• Early exits + Stock models: adding exits to BERT resulted

in average compute and latency savings of 42.7%, with
minimal (1.7%) impact on accuracy, across the datasets.

• Early exits + Distillation: early exit benefits persist when
applied to compressed models, highlighting the comple-
mentary nature of these optimization techniques. More
specifically, DistilBERT-EE incurs 10.5% lower compute
and latency values relative to DistilBERT, with almost iden-
tical accuracy (within 0.14%).

2.3 Challenge: Batching in EE-DNNs

Despite the near-ideal characteristics for inference that EE-
DNNs intuitively offer, practical usage for EE-DNNs have
been limited in practice.

A fundamental requirement for achieving optimal through-
put in ML training and inference is the ability to batch inputs.
Batching enables accelerators like GPUs to utilize all of their
constituent cores and maximize the parallelism they offer.
Unfortunately, EE-DNNs are fundamentally at odds with
batching. Paradoxically, inputs exiting a model early (i.e., at
intermediate layers) to yield compute reductions also results
in shrunken batch sizes for the rest of the model’s inference.
This, in turn, fails to saturate accelerators and leads to poor
resource utilization. Figure 3 illustrates this behavior: roughly
half of the samples exit halfway through the model (by ramp
6), which cuts GPU utilization by more than 25% for the

remainder of the model execution. In summary, there exists a
fundamental tension between compute savings and resource
utilization with EE-DNNs.

One workaround to this natural tension is to make all in-
puts in the whole batch exit at ramps, which maintains high
resource utilization and eliminates the overhead associated
with reforming a batch after certain samples exit. However, as
the batch size increases, the probability of all of the samples
in the batch exiting at the same ramp decreases exponen-
tially, limiting the feasibility of this approach. As a result,
existing early-exit networks have restricted the use of batch-
ing [39, 49, 59, 68–70, 73], negating their benefits.

2.4 Real World Importance

Here, we describe our experience in using EEs in a large-scale
production service. Although, we are unable to list in-depth
operational details due to their business critical nature of the
service, our aim is to highlight the practical utility of EEs in
real industrial settings and materialize the challenges above
as the primary impediments to such deployments.

The infrastructure runs some of the world’s largest enter-
prise inference workloads. Of several services it supports, one
particular service has been under active development to lower
the computation requirements since the projected costs were
prohibitive in nature. Concretely, the service performs docu-
ment classification and ranking to several underlying tasks,
and started with a derivative of the 12-layer BERT-BASE
model. The service handles many billion requests per day
and the projections indicate exponential increase, drawing
a team-wide focus on imposing a compute cost budget per
input without sacrificing SLO constraints.

While the 12-layer version delivered the best accuracy,
the cost per input was prohibitive, with projections of multi-
million $ overheads atop the budget. Following this, the team
resorted to off-the-shelf compression techniques, specifically
a combination of knowledge distillation and pruning, that
generated 6- and 3-layer variants of the model. The 6-layer
version met accuracy targets, but still considerably exceeded
the per-input compute cost. In contrast, the 3-layer version
met that compute cost, but brought ≈4% accuracy loss.

The service then turned to EEs on the 12-layer version
which not only satisfied the per-input compute cost (subject
to the SLO), but also delivered accuracies that closely mir-
rored (within 1%) the original 12-layer model. Unfortunately,
the lack of batching in EEs (§2.3) proved to be the show-
stopper, especially for a service that needs to serve many
billion requests. An alternate solution aimed at developing
custom hardware to support EE via a streaming mechanism
was attempted but quickly abandoned due to prohibitive costs.
As a result, the service compromised and resorted to the 3-
layer version with accuracy loss.

Based on our experience, we posit that if the batching and
thus the resource utilization problem were solved, there exist
many practical use cases that would greatly benefit from EEs

Load Forecaster
(ARIMA)

Performance
Profile

Resource
Allocator

Data
Logger

OptimizerLoad
Forecast

Res-Perf
Data

Res-Perf Estimate

Exit Rate

Resource
Demand

Alloc Data

Central Scheduler Physical Resource

GPUsPerf Data

Inference
Requests

Figure 4. 𝐸3 architecture. Arrows indicate data flow.

at large scale (including our own) – enabling such practical
use of EEs is the core focus of this paper. While the bulk of
our evaluation is on real-world motivated usecases that mimic
our production scenario by using the 12-layer BERT language
model, we also show that the techniques we present extend to
autoregressive LLMs in §5.1.3.

3 𝐸3 Design
𝐸3 (fig. 4) seeks to mitigate the limitations of early-exit net-
works and utilize them to provide efficient inference. The
key idea 𝐸3 uses to achieve its goal is to maintain a constant
batch size during the execution of the early-exit network. To
do so, it splits a DNN model into parts, places each part on
different GPUs, and then executes them in a pipelined fashion.
Hence, 𝐸3 needs to determine the optimal number of splits,
and the optimal number of GPUs to run the splits on. For
the former, 𝐸3 utilizes an online profile estimation technique
that is computationally light, and for the latter, it proposes
a dynamic programming-based optimization coupled with a
heterogeneity-aware model-parallel scheduler. We describe
each component in detail.

Importantly, 𝐸3 does not assume any knowledge or make
any assumptions about the inner-workings of the early-exit
mechanism or the model; instead, it generalizes to any EE-
DNN. The only requirement for 𝐸3 is that it is able to query
the batch size at every exit ramp (for profiling). We show in
§3.4 that additionally granting 𝐸3 the freedom to disable an
exit ramp (e.g., by using a model-provided API) can result
in additional performance benefits. However, this is not a
requirement.

3.1 Online Batch Profile Estimation

𝐸3 makes the determination of the optimal number of splits
for an EE-DNN based on the batch size reduction charac-
teristics. Thus, it must determine how batch size changes
over the course of execution of the EE-DNN. Since inference
workloads are time-varying [34], 𝐸3’s batch profiling must
operate in an online fashion. To do this, 𝐸3 uses ARIMA [37],
a timeseries forecasting method.

We divide the workload into chunks of 2 minute inter-
vals, and use a sliding window over the workload requests to
prepare the input timeseries for the online profiler. In each
window, the input to the profiler is the batch size at each of the
exit ramps in the EE-DNN model. An example is depicted in
fig. 1, where the EE-DNN has many exit ramps (correspond-
ing to each layer in the model), and each exit is annotated
with the batch size. The model ingests inputs at a batch size

R1

La
ye

r 1Batch
size 16

1

R2

La
ye

r 2

2

15 13 …

R6

La
ye

r 6

1

Batch
size 16

Remaining
batch size

8

Remaining
batch size

8

…

…

R1

La
ye

r 1Batch
size 16

1

R2
La

ye
r 2

2

15 13 …

R6

La
ye

r 6

1

…

…

R7

La
ye

r 7

1

R8

La
ye

r 8

1

15 14 …

R12

La
ye

r 1
2

…

… Remaining
samples exit

GPU 0

GPU 1

GPU 2

Figure 5. 𝐸3 uses a model-parallel execution strategy to break
up EE-DNNs into splits that keep batch sizes constant, and
run those splits across (potentially) heterogeneous hardware. 𝑅𝑛
indicates the exit ramp after layer 𝑛.

of 16. The estimator outputs its forecast of the expected batch
sizes at each of the exit ramps in a rolling fashion. The esti-
mation provides the optimizer with the relative decrease in
batch size, e.g., the batch-size shrunk to 50% by layer 3. Due
to the time-varying nature of the workload, the estimator runs
continuously, and we show the performance and efficacy of
𝐸3’s online batch profile estimator in §5.

We emphasize that perfect prediction is not required, as
the output of the estimator is just a guide in 𝐸3’s optimiza-
tion (§3.2). 𝐸3’s scheduler includes safety checks to ensure
that the predicted values never exceed the maximum possible
batch sizes that can be supported by the resources. Mild pre-
diction inaccuracies do not alter 𝐸3’s performance, and larger
inaccuracies only affect the magnitude of 𝐸3’s gains (not cor-
rectness), e.g., predicting a lower batch size will reduce the
realizable gains. Nevertheless, fig. 21 shows that 𝐸3’s batch
size profiles closely match reality. For example, if we predict
a batch shrinkage of 50% by layer 6, split the model and run
an input batch size of 16 (fig. 5), 𝐸3 does not expect (nor rely
on) the output at layer 6 to be exactly 8. Rather 𝐸3 only needs
it to be close to 8 for the best performance (not correctness),
and can handle any size as long as it can safely merge multi-
ple of such batches at the next layer without overshooting the
available resources (§5.8.2).

The use of a timer-based batch profile estimation may be
problematic when unexpected spikes occur. 𝐸3 handles this in
the same way that traditional inference pipelines do: we incor-
porate a slack for the SLO in the optimizer (§3.2), and can use
buffer resources if available. In its current design, 𝐸3 drops re-
quests that cannot be served, similar to Clockwork [29]. Since
𝐸3 monitors its estimated batch profile compared to observed
(fig. 4), it can reactively re-run the optimizer if they differ
drastically. We defer the exploration of proactive workload
spike mitigation techniques to future work.

3.2 Dynamic Programming based Optimization

The objective of 𝐸3 is to maintain the batch size nearly con-
stant during the execution of the EE-DNN. In our earlier

example of an EE-DNN with exit ramps (fig. 1), one solution
to maintain the batch size constant is to split the model into
two parts. For instance, one may slice at the end of the exit
ramp where the batch size shrinks to 8, thus creating two
splits of the model—the first split ends with the ramp where
the batch size shrinks to 8, the second split contains the rest
of the model2. The split model can then be executed in the
following fashion: we execute the first split twice (consuming
two batches of 16 inputs), resulting in two outputs of batch
size 8 each; then we combine the two outputs to obtain a
batch size of 16 for the second split. While this maintains the
batch size to 16 throughout the execution of the EE-DNN, in
general, we need to account for the execution time, the latency
constraints on the inputs and several other criteria. Thus, 𝐸3

formulates the splitting and execution of the EE-DNN model
as an optimization problem.

Consider the task of executing a EE-DNN model with
𝐿 layers for a workload under consideration with a latency
constraint of 𝑆𝐿𝑂 ms and request rate of 𝑅 queries per second.
𝐸3’s goal is to cut the EE-DNN model into the optimal number
of splits. For a particular split of the model with 𝑁 layers in
it, we can define the execution time or cycle time:

𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒 = 𝐴(0 → 𝑁, 𝐵0→𝑁) (1)

where 𝐵0→𝑁 is the estimated batch profile for the EE-DNN
model with 𝑁 layers (i.e., how the batch size shrinks from
layer 0 to 𝑁). Since the request rate is 𝑅, we can estimate the
largest batch size, 𝐵0, that does not violate the SLA. Using
these definitions, the throughput of the system is

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐵0

𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒
(2)

and the worst case latency, 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑐 is simply𝐶𝑦𝑐𝑙𝑒𝑇𝑖𝑚𝑒.
Our aim is to satisfy the following constraints:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑤𝑐 ≤ 𝑆𝐿𝑂 − 𝑆𝑙𝑎𝑐𝑘

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 ⩾ 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝐶𝑜𝑠𝑡 ≤ 𝛼 ×𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

where 𝑆𝑙𝑎𝑐𝑘 is the allowed slack in SLO (⩾ 0),𝐶𝑜𝑠𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
is the cost of the baseline model, 𝛼 is a cost multiplier. We can
define a dynamic programming based recursive optimization:

𝐴(𝑖 → 𝑗, 𝐵𝑖→𝑗) = min
𝑖⩽𝑠⩽ 𝑗

{
𝐴(𝑖 → 𝑠, 𝐵𝑖→𝑠)+
𝑇 (𝑠 + 1 → 𝑗, 𝐵𝑠+1→𝑗)

where𝑇 (𝑖 → 𝑗, 𝐵𝑖→𝑗) =
∑𝑗

𝑘=𝑖
𝑃 (𝑘, 𝐵𝑘). In this formulation,

𝑃 is the throughput-latency profile (throughput and latency
of layer 𝑘 with batchsize 𝐵𝑘), 𝐵𝑘 is the estimated batch size
at layer 𝑘, and 𝐵0 is the maximum batch size that can be
supported, derived using the request rate 𝑅. The solution to
this optimization formulation gives the optimal splits.

2The splits contain equal number of layers here, but this need not be the case.

𝐴(𝑖 → 𝑗,𝑚, 𝐵𝑖→𝑗) = min
𝑖⩽𝑠⩽ 𝑗

min
𝑐∈𝐶

min
1⩽𝑚′<𝑚𝑐

max

𝐴(𝑖 → 𝑠,𝑚𝑐 −𝑚′, 𝐵𝑖→𝑠)
𝑇𝑥 (𝑠, 𝑠 + 1)
𝑇 (𝑠 + 1 → 𝑗, 𝑐,𝑚′, 𝐵𝑠+1→𝑗)

𝑇 (𝑖 → 𝑗, 𝑐,𝑚, 𝐵𝑖→𝑗) =
𝑗∑︁

𝑘=𝑖

𝑃 (𝑘, 𝑐,𝑚, 𝐵𝑘)

where:
𝑃 is the throughput-latency profile for GPU config 𝑐

𝐵0→𝑁 is the est. batch profile for EE-DNN with 𝑁 layers
𝐵𝑘 is the est. batch size at layer 𝑘; each GPU handles 𝐵𝑘/𝑚 samples

𝐵0 is estimated using 𝑅, request rate
𝑚𝑐 is number of GPUs of configuration 𝑐 in data-parallel mode

𝐶 is the set of GPU configurations available
Figure 6. The optimization formulation in 𝐸3

3.2.1 Leveraging Model Parallelism In the previous for-
mulation, the splits of the EE-DNN are executed in a single
GPU in a serial fashion, or multiple GPUs in a data paral-
lel fashion, where each GPU executes the splits sequentially.
This may be optimal for some cases (𝐸3’s optimizer consid-
ers all placement choices and will pick it as the choice in
such scenarios), but in practice the request rate (𝑅) is large
enough to warrant the use of a GPU cluster. This provides
𝐸3 with the opportunity to execute the splits on different
GPUs in parallel (fig. 5), commonly referred to as inter-layer
model-parallelism. Further, each split can be replicated in-
dependently. For a cluster with𝑚 machines, we can modify
𝐸3’s optimization as:

𝐴(𝑖 → 𝑗,𝑚, 𝐵𝑖→𝑗) = min
𝑖⩽𝑠⩽ 𝑗

min
1⩽𝑚′<𝑚

𝐴(𝑖 → 𝑠,𝑚 −𝑚′, 𝐵𝑖→𝑠)+
𝑇𝑥 (𝑠, 𝑠 + 1)+
𝑇 (𝑠 + 1 → 𝑗,𝑚′, 𝐵𝑠+1→𝑗)

where the first split is replicated on𝑚−𝑚′ machines,𝑇 (𝑖 →
𝑗,𝑚, 𝐵𝑖→𝑗) =

∑𝑗

𝑘=𝑖
𝑃 (𝑘,𝑚, 𝐵𝑘) so that each GPU (machine)

processing 𝐵𝑘

𝑚
samples. 𝑇𝑥 is the communication time for

sending data from the end of a split to the next. In addition to
minimizing the number of splits, the formulation also tries to
minimize the resources to run the splits.

3.2.2 Incorporating Pipelining Due to the use of model
parallelism, 𝐸3 may incur GPU underutilization if communi-
cation costs dominate. To mitigate this, we adopt a simple
pipelining strategy. Each GPU processing a split can process
the next batch once it is done with the current batch, thus
allowing overlapping computation and communication. In
the steady state of such a pipeline, 𝐸3’s optimization can be
modified to optimize 𝐴(𝑖 → 𝑗,𝑚, 𝐵𝑖→𝑗):

min
𝑖⩽𝑠⩽ 𝑗

min
1⩽𝑚′<𝑚

max

𝐴(𝑖 → 𝑠,𝑚 −𝑚′, 𝐵𝑖→𝑠)
𝑇𝑥 (𝑠, 𝑠 + 1)
𝑇 (𝑠 + 1 → 𝑗,𝑚′, 𝐵𝑠+1→𝑗)

where the pipelining is able to hide the latency from sum
of all parts to the maximum latency incurred by any one.

3.2.3 Accommodating Heterogeneity 𝐸3 is further able
to exploit heterogeneity in the hardware configuration, if
available, to its advantage. Since GPUs differ in their com-
putational capabilities and cost, having a mix of GPUs can
be beneficial in 𝐸3’s model parallel execution strategy. For
instance, each split can have different computational require-
ments, and placing the split on the right hardware configura-
tion can both reduce cost and improve utilization. Towards
this, 𝐸3 incorporates heterogeneity in its optimization for-
mulation by accounting for the configuration of the GPUs
available (e.g., A100) within the constraint that the replicas
of each split can only be placed on the same type of GPU.
Figure 6 shows the final optimization formulation.

3.3 Heterogeneity Aware Model-Parallel Execution

𝐸3’s optimizer results in the apt number of splits for the EE-
DNN model, the number of (heterogeneous) resources to
place them, and the batch sizes to run the splits with. It uses a
heterogeneity-aware scheduler to execute them.

The scheduler manages all the resources available in the
cluster and uses a lightweight mechanism to probe the worker
machines for their availability. Since DNN inference is highly
predictable [29], the scheduler knows exactly the amount of
time necessary to execute each split. Using the output from
the optimizer, 𝐸3’s scheduler places the split in the available
resources and starts the model parallel execution. The input
is batched to attain the correct batch size and directed to the
machines hosting the model splits. When a split has finished
execution, the outputs are then directed to the machines host-
ing the next split, where multiple batches are fused to bring
the batch to the correct size. The scheduler provides constant
feedback to the optimizer on the availability of the machines
for the next prediction period.

Each split independently executes batches, and upon com-
pletion of the batch, immediately moves on to the next. The
machine hosting the next split maintains a queue that holds
the partial results until it has received such inputs from oth-
ers. A potential problem in this pipelined execution strategy
arises if the execution times of splits are imbalanced—queues
may build up and result in SLO misses. 𝐸3 sidesteps this by
explicitly considering execution time of splits when deter-
mining which splits to use and where to place them. Even
with this, however, it is possible for some GPUs to become
stragglers [33]. For this, 𝐸3’s scheduler maintains simple mon-
itoring mechanisms to oversee the execution time of the splits
on each of the resources, and marks stragglers to be excluded
in the next assignment. Note that 𝐸3 inherits the low-level ex-
ecution decisions (e.g., w.r.t SLO violations) of the platform
on which it is implemented.

3.4 Improving 𝐸3 by Relaxing Assumptions

So far, the techniques we have outlined made no assumptions
about the EE-DNN, its exit strategies, or ramps. 𝐸3’s efficacy
can be further improved if this assumption is relaxed, and it is

granted more control over the EE-DNN. For instance, provid-
ing information about the exit strategy can let 𝐸3 control the
exit in real-time if desirable. To do so, 𝐸3 provides a simple
wrapper function, exit-wrapper, that a developer of an
EE-DNN would use to wrap the exit checking logic with.
𝐸3 can use this wrapper to control the exit logic’s execution

depending on the EE-DNN architecture (§2). For EE-DNNs
where each exit is independent, i.e., a decision to exit at a
ramp is made just by the logic at that particular ramp, 𝐸3’s
wrapper can be used to take decisions per ramp independently.
For EE-DNN architectures where exits are dependent, i.e., the
decision to exit at a ramp is made using information from
earlier ramps, 𝐸3 keeps track of this information to determine
whether the logic has to be executed within a split. These
two styles of ramp architectures that 𝐸3’s wrapper supports
account for a large fraction of EE-DNNs. A simple use-case
here is to disable ramps that are not useful. Sophisticated use-
cases such as real-time ramp tuning are possible; we leave
them for future work.

Regardless, we reiterate that using the wrapper is not a
necessity – indeed, our evaluation results assume that the
wrapper is not used (we evaluate it in §5.8.6)– it simply
provides an opportunity to improve 𝐸3’s performance.

4 End-to-End Inference & Implementation
We implemented 𝐸3 as a layer on PyTorch [8] and use Torch-
Serve [10] to serve inference requests using a REST API. We
optimize GPU serving by converting models to ONNX [7]
and using TorchServe’s native ORT support [5]. While this
closely mimics our production scenario (§2.4), it does not
depend on any platform specifics and can be ported to other
inference frameworks, e.g., NVIDIA Triton [4].

The end-to-end inference pipeline supports both closed-
and open-loop clients (§5). 𝐸3 takes a EE-DNN model as
input and automatically splits and replicates it using its tech-
niques. Each instance of a split of the model maintains its
own queue and executes requests in batches. For closed-loop
clients, the batching is static; the scheduler simply waits for
the right batch to be formed before feeding into the first split.
For open-loop clients and workloads with variable request
rates (e.g., Twitter trace in fig. 19), just like other serving
systems, 𝐸3 follows dynamic batching by queuing incoming
requests and waiting until it either has the target batch size
or the queued inputs would violate SLAs if not immediately
scheduled; on either criteria, 𝐸3 dispatches the corresponding
inputs. The scheduler incorporates a slack for the SLO (20%
in our evaluation), and requests that cannot be served are
dropped (§3.1). By default, 𝐸3 runs its splitting optimization
every 2 minutes; this frequency outpaces the variability ob-
served in our production environment (on the order of hours),
but we chose 2 minutes to highlight the lightweight nature
of the process (fig. 20). 𝐸3 leverages state-of-the-art serving
platforms for its reconfiguration needs. These platforms sup-
port transparent scaling in both directions (e.g., during load

variations) that 𝐸3 hooks into when a change to the splits is
necessary.

With open-loop clients and varying request rates, EE-DNNs
in general pose a challenge in terms of estimating the execu-
tion time necessary for dynamic batching due to the adaptive
nature of execution. However, because 𝐸3 solves the batch-
ing problem by reducing the model into independent, repli-
cated pieces that are (relatively) stable in exit rate (and thus,
input/output batch sizes and processing time), it is able to
resolve the tension between batch decisions and variability
from exit rates, making it similar to the closed-loop setting.

5 Evaluation
We evaluate 𝐸3 using a variety of workloads and compare it
against both state-of-the-art (SOTA) EE-DNN models and
stock DNN models. Our key results show that:
• For a fixed set of resources, 𝐸3 is able to provide up to 1.70×

and 1.74× better goodput compared to SOTA EE-DNN
models in NLP and computer vision, respectively. 𝐸3 also
outperforms stock DNN models by up to 1.32× and 1.58×.
Additionally, 𝐸3’s improvement increases with increase
in batching opportunities or availability of heterogeneous
resources (§5.1).

• 𝐸3’s win generalize to autoregressive LLMs and can further
complement compression. 𝐸3 boosts the performance of
compressed models by up to 1.67×. On LLMs, 𝐸3 achieves
2.84× and 3.8× better goodput compared to stock mod-
els, in translation and summarization tasks, respectively.
(§5.1.2, §5.1.3)

• When the performance requirements, such as the desired
throughput, are fixed, 𝐸3 is able to achieve them at sub-
stantially lower cost: 𝐸3 incurs 35% to 78% lower cost
depending on the batching opportunities (§5.3).

Experimental Setup: We run experiments with 4 different
NVIDIA GPUs – A6000, V100, P100, K80, and consider
a cluster with 46 GPUs spread across 26 machines. Each
server has one 12-core Intel Xeon E5-2690v4 CPU, 441 GB
of RAM, and one or more NVIDIA GPUs. GPUs on same
server are connected via a shared PCIe interconnect, and
servers are interconnected via 10 Gbps Ethernet. While this
setting test 𝐸3 under constraints, we note that faster intercon-
nects (e.g., 40/100 Gbps links, NVLink) would benefit 𝐸3

and further improve its performance. All servers run 64-bit
Ubuntu 16.04 with CUDA library v10.2 and PyTorch v1.6.0.
Datasets and models: We use numerous state-of-the-art mod-
els to evaluate 𝐸3. For non-generative vision tasks, we pri-
marily use ResNet-50 [35] from TorchVision [51] and BERT-
BASE, LARGE from Transformers [11] for NLP tasks. For
autoregressive tasks, we use T5 [58] and Llama [66], and for
compressed model we use DistilBERT [57]. Following previ-
ous work [29, 56], we run ImageNet [22] and the GLUE [2]
benchmark for non-generative tasks, and WMT [16] and Sam-
sum [26] for autoregressive tasks in closed-loop clients. We
evaluate open-loop clients in §5.7.

1 2 4 8
Batch size

0

2000

4000

6000

8000

10000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

16
32 22

14

21
86 30

88

31
74 35

04

60
25

53
85

71
32

64
84

52
29

75
50

BERT-BASE
DeeBERT
E3

Figure 7. 𝐸3 outperforms EE NLP models
by upto 1.44× in homogeneous settings.

1 2 4 8 16 32
Batch size

0

10000

20000

30000

40000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

28
88 50

96
49

05

56
54 85

56 97
12 10
99

8
14

06
6

16
15

3

15
97

0 22
47

6 26
60

6

17
52

1
18

45
8

28
37

8

19
31

5
19

89
7

33
62

7

ResNet50
B-ResNet50
E3

Figure 8. 𝐸3 outperforms EE vision models
by upto 1.74× in homogeneous settings.

1 2 4 8 16 32
Batch size

0

500

1000

1500

2000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

40
5

44
6

48
1 56

1 65
1 73

3

70
8 81

3 10
21

79
1 88

9
12

43

86
7

11
11

14
26

91
7

91
8

15
30DistilBERT

DistilBERT-EE
E3

Figure 9. 𝐸3 complements compression by
augmenting its performance by up to 1.67×.

1 2 4 8 16 32
Batch size

0

200

400

600

800

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

33
70 94

33 61
96

43 61
12

8

75 75
21

3

12
5

10
3

32
0 34
1

20
9

66
3T5

CALM
E3

Figure 10. When applied to translation
tasks, 𝐸3 can improve performance of stock
LLMs by up to 2.84×.

1 2 4 8 16 32
Batch size

0

200

400

600

800

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

63
24 38

87
27

10
1

86 58
20

4

10
8

88
28

3

13
4

10
3

47
3

17
6

11
5

68
3T5

CALM
E3

Figure 11. In summarization tasks, 𝐸3

brings up to 3.8× improvements in LLMs
(average output length: 18 tokens).

1 2 4 8 16 32
Batch size

0

250

500

750

1000

1250

1500

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

10
2

42
15

1 19
0

68
27

4 32
8

12
3

46
8 60

8
23

5
84

1

74
8

39
7

10
51

85
2

57
5

11
99Llama3.1-8b

Llama3.1-8b-EE
E3

Figure 12. 𝐸3’s techniques extend to the
decoder only LLMs. On Llama, the gains
are up to 1.48×.

Comparison & Metrics: We primarily evaluate 𝐸3 against
BranchyNet [64], DeeBERT [69] and CALM [58], three rep-
resentative EE-DNNs in the vision, non-generative and autore-
gressive NLP domains respectively (§5.6 considers other EE
architectures). Since we are unaware of an early-exit model
for compressed models, we develop one for DistilBERT to
show the complementary nature of 𝐸3 (and EEs in general) to
compression (§5.1.2). Results in deep-dive experiments focus
on the NLP model, but we note that the shown trends persist
for all considered models. Each EE-DNN can be tuned to
a specific early exit entropy, which determines the tolerable
error. Unless otherwise specified, we pick the entropy to be
0.4 (§5.8.4 evaluates other values), which results in less than
2% error, an acceptable value in our production scenarios.

Our main metric of comparison is goodput, or the number
of samples per second that can be sustained without violating
SLOs. We use a default SLO of 100 ms (in line with prior
work [29, 61]), but consider other values in §5.8.5. We use
batching by default and consider different batch sizes; results
are shown for all batch sizes that avoid SLO violations. Re-
ported numbers include queuing delays (if applicable) and
model-parallel overheads for 𝐸3, unless specified. We note
that the workloads considered mimic the high level character-
istics (e.g., average arrival rate, SLO) of the traces we observe
in production, and that our results are consistent with those
we’ve seen when trying this approach in practice.
Workloads: We use two kinds of workloads in the paper.
Following previous work [29, 30, 56] and many subsequent
works, we use the arrival rates in the open source Twitter
trace scaled up to simulate an open source variable rate trace
(due to the extreme bursty nature of this trace, we couldn’t
scale it beyond an average of 1000 req/s). Second, we use

both uniform arrivals and our own production-based hyper
parameters to simulate workloads to 𝐸3, scaled down to our
available hardware resources. We note that due to the business
critical nature of the enterprise workloads, the company does
not allow non-business use of raw requests (e.g., we couldn’t
access the request to replay it through 𝐸3), and due to the
volume of requests, the infrastructure doesn’t log metadata
on each request-instead it only records statistics on load peri-
odically. Thus, we use the open source GLUE inputs scaled
to mimic our setting. The production infrastructure typically
processes several million requests per second; which when
scaled to our resources averages 9,000 requests per second for
NLP with a variance of approximately 5%. To examine hard-
ness, we analyze the GLUE dataset to bin them to easy and
hard inputs; and then varied their ratio. Our real-world real-
world scenarios predominantly exhibit the 80% easy, 20%
hard input mix which is a favorable scenario for 𝐸3.

5.1 Goodput Improvements

We first show the goodput obtained by 𝐸3 and its comparison
systems for various batch sizes, assuming the cost to be con-
stant, i.e., both 𝐸3 and comparison systems use resources that
cost the same.

5.1.1 Non-Generative Models In figs. 7 and 8, we depict
the performance of 𝐸3 when the cluster is made up of homo-
geneous resources, specifically 16 V100 GPUs. As we see,
when the batch size is 1, EE-DNN is able to outperform the
BERT model. This is expected, as the EE-DNN is able to
“exit” many of the samples early. However, as the batch size
increases, EE-DNN model becomes progressively worse com-
pared to the non-EE model, BERT-BASE, which is now able
to utilize the parallelism offered by the GPU. 𝐸3 on the other

1 2 4 8
Batch size

0

2000

4000

6000

8000

10000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

22
80 28

92

29
41 38

97

39
13 46

29

57
48

48
86

76
17

61
55

47
83

81
38BERT-BASE

DeeBERT
E3

Figure 13. Heterogeneous resources boost
𝐸3’s NLP performance to up to 1.7×.

1 2 4 8
Batch size

0

10

20

30

40

50

GP

Us

42

33 33

25 25

21

17

20

14 16

20

13

BERT-BASE
DeeBERT
E3

Figure 14. When goodput is fixed, 𝐸3

achieves it using less resources.

1 2 4 8
Batch size

0.0

0.5

1.0

1.5

2.0

2.5

Co
st

 ($
/m

in
)

2.17

1.7

1.7
1.29

1.29

1.09 0.88

1.03

0.73

0.83

1.03

0.67

BERT-BASE
DeeBERT
E3

Figure 15. 𝐸3 incurs the lowest cost (up to
35% lower) for a fixed goodput.

hand, is able to outperform BERT-BASE in all cases, and
DeeBERT in all cases except when the batch size is 1. When
the batch size is 1, 𝐸3 incurs a small penalty due to its model-
parallel execution. 𝐸3’s performance improvement increases
with increase in batch size, and provides up to 1.44× increase
in goodput compared to DeeBERT, and up to 1.30× compared
to BERT-BASE. Note that while the models do not saturate
the GPU at a batch size of 8, the next batch size violates the
SLO. The improvements are bigger in vision models, where
𝐸3 is able to provide up to 1.74× better goodput.

5.1.2 Compressed Models Next, we show that 𝐸3 is com-
plementary to compression. Since there are no available early-
exit variants of compressed models, we developed one in
house as described in §2. We repeat the experiment above for
the NLP task but replacing BERT with its compressed variant.
We compare against DistilBERT-EE, our in house developed
EE variant and 𝐸3 which applies the techniques we propose in
this paper on DistilBERT-EE. The results are shown in fig. 9
which shows the relative performance of 𝐸3 compared to the
compressed model.

We notice that unlike its non-compressed counterpart, com-
pressed models are able to leverage early-exits better and that
the performance gains carry over for batch sizes greater than
1. This is because a major fraction of the inputs exit right at
the middle of the model (after layer 3). However, as the batch
size increases, the relative performance of the EE variant de-
grades. In contrast, 𝐸3 is able to provide significant benefits,
achieving up to 1.67 × improvements in goodput.

5.1.3 Auto-Regressive Large Language Models (LLMs)
Now we evaluate whether our techniques generalize to emerg-
ing autoregressive, large language models (LLMs). We con-
sider the recent CALM architecture [58] that enables EE on
T5 LLM. We evaluate 𝐸3 on two tasks: machine translation
using the WMT dataset [16] and document summarization
using the samsum dataset [26]. Using CALM paper’s default
configuration (softmax confidence measure with a threshold
of 0.25), we find that approximately 70% of the inputs exit
by layer 2 (of 8 decoder layers). 𝐸3 thus splits the model
into two parts at the end of layer 2. Due to the compute and
memory requirements of the T5 model, we use 4 NVIDIA
A6000 GPUs for this experiment.

Figure 10 compares the goodput with 𝐸3, T5, and CALM
for the translation task, while fig. 11 compares the goodput
when applied to the summarization task. As shown in fig. 10
and in line with Table 2 of the CALM paper, CALM brings
2.84× goodput increases compared to T5 for batch size of 1
(CALM does not support batching as discussed in Appendix
C of [58]). However, benefits quickly diminish as batch sizes
grow. In contrast, 𝐸3 maintains its speedup for all batch sizes.
𝐸3’s benefits are even bigger when applied to the summa-
rization task, which generates variable length outputs (we
observed an average length of 18 tokens per output in this
experiment). Here, we notice an improvement of up to 3.8×.

We do not use CALM as a primary baseline in other eval-
uations due resource constraints and because CALM’s exit
methodology assumes an encoder-decoder architecture to en-
able exiting (e.g., T5’s encoder state) that may not carry over
to decoder-only architectures (e.g., GPT family). Iterative
scheduling/continuous batching is a technique introduced in
Orca [72] to resolve LLM batching inefficiency across iter-
ations. However, each iteration in an LLM consists of com-
puting over the entire model and thus the EE-batch shrink-
ing problem remains within an iteration (our focus). Since
CALM (decoder-only LLMs) currently cannot support itera-
tive scheduling (early-exiting), we defer synergizing iterative
scheduling with 𝐸3 to a future work.
Llama family: We further investigate whether 𝐸3’s benefits
carry over to decoder-only LLMs. Due to the lack of early-exit
variants of such models, we resort to the guidance in recent
work [14], we selected the 8 billion variant of Llama 3.1 [3]
and replicate the final layer as the exit ramp. Unfortunately,
this alone is insufficient to convert the model into its early-
exit variant, as the problem of managing the KV cache still
needs to be resolved. To the best of our knowledge, this is
an open problem: while CALM proposes a solution to this
problem, it is focused on encoder-decoder architecture and
not on decoder only models such as Llama. Therefore, we
restrict ourselves to the Google BoolQ question answering
dataset [19] where the output is a single token (yes/no). We
note that this restricts the gains 𝐸3 can possibly obtain, as,
unlike in the previous case with CALM, there are no multiple
iterations to benefit from. Nevertheless, this experiment still
shows the generalizability of 𝐸3 to a different family of LLMs.

Using 𝐸3’s profiler on the BoolQ dataset using the softmax
confidence showed that approximately 50% of the inputs exit
after layer 25 of the Llama3.1-8b model. Thus, 𝐸3 splits the
models into two parts. We then run the experiment using
different input batch sizes and show the results in fig. 12.
Noteworthy is the significant difference between the vanilla
and the early-exit variant of the model (Llama and Llama-
EE), even for small batch sizes; even with a batch size of 1,
the EE variant significantly underperforms the vanilla variant.
The reason is the overhead of exit checking, due to the large
vocabulary sizes in Llama3.1-8b, the cumulative overhead of
checking at every layer adds up. In contrast, 𝐸3 only needs to
check for exits at the end of splits, further adding to its gains.
Here, 𝐸3 is able to outperform even the vanilla variants by up
to 1.48×. We emphasize that the gains are restricted due to
the limitations of the benchmark as we described earlier.

5.2 Heterogeneity in Compute Resources

Figure 13 shows the performance of 𝐸3 when the cluster
consists of heterogeneous resources. Here, we use a mix of
V100, P100, and K80 GPUs. Since we maintain the cost to
be constant, we picked two configurations of machines that
maximizes the goodput: a homogeneous cluster of 16 V100
GPUs, and a heterogeneous cluster of 6 V100, 8 P100 and 15
K80 GPUs. Both clusters cost $0.013 per second. We notice
that since the early-exit models are unable to support larger
batch sizes, and thus not able to leverage the parallelism in the
GPU, it is almost always better to allocate cheaper GPUs. On
the other hand, the non early-exit models are always better
using the most capable GPUs as long as there are enough
opportunities for batching. Thus, neither are able to exploit
the heterogeneity. In contrast, 𝐸3 is able to effectively uti-
lize the different GPUs and outperform the comparisons. For
each batch size, 𝐸3 identified the optimal configuration that
maximizes the goodput, providing up to 1.70× improvements.

5.3 Cost Effectiveness

In this experiment, we evaluate the ability of 𝐸3 to reduce
the cost of inference when the throughput is fixed. We fix
the desired throughput to be 6000 samples per second. We
then consider two settings: in a homogeneous cluster which
consists of V100 GPUs, we determine the number of GPUs
that are necessary to sustain the desired performance; and in
a heterogeneous cluster consisting of V100, P100 and K80
GPUs, we determine the minimum cost incurred to sustain
the desired performance. Note that since the pricing of the
GPUs vary drastically between service providers, we use the
average price as a rough indicator of the current price. The
results are shown in figs. 14 and 15 respectively.
𝐸3 provides the best performance in all settings and all

batch sizes. For small batches, no model is able to utilize the
GPUs efficiently, resulting in the need to use more GPUs.
As batching opportunities increase, both BERT and 𝐸3 are
able to utilize the resources better, and hence the number

1 2
80E/20H

4 8 1 2
50E/50H

4 8 1 2
20E/80H

4 8
0

2000

4000

6000

8000

10000

12000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

16
32

27
41

27
01 30

88 35
88

36
95

60
25

61
76

79
09

64
84 67
36

90
71

16
32 21

20
20

74 30
88

27
64 31

12
60

25
48

98
67

14
64

84
47

18
66

55
16

32 18
85

18
31

30
88

23
52

23
63

60
25

44
67

45
24

64
84

47
37 49
63

BERT-BASE DeeBERT E3

Figure 16. 𝐸3’s online batch profiling (§3.1) and optimizer (§3.2)
are able to adapt to workload variations.

of resources required reduces. DeeBERT is also able to use
batching sparingly, but due to the batching limitations of
EE-DNNs, the resource utilization is not as efficient as 𝐸3 or
BERT, resulting in it using more resources than either of them.
𝐸3 is also able to provide the best performance at the lowest
cost. Again, we see that at lower batch sizes, the number of
resources required to sustain the performance is higher and
that drives the price higher even with heterogeneity. When
this is not the case, 𝐸3 is able to provide better performance
per dollar compared to its comparisons: it achieves the same
performance at 35–78% lower cost.

5.4 Workload Adaptability

We now seek to answer “Can 𝐸3 adapt to workload varia-
tions?” by evaluating its batch profiler and optimizer. We
created three variations of the workloads by changing the
ratio of the easy and hard examples to 80:20, 50:50 and 20:80.
We then ran inference in closed loop on each of the models on
both homogeneous and heterogeneous resources, switching
between the workloads at fixed intervals. We start with the
80:20 mix, and after a specific time, we switch to the 50:50,
and then to the 20:80 mix. Figure 16 shows the results.

We notice that the EE-DNNs provide benefits compared
to their non EE counterparts when the batch size is small
and the mix has more easy examples. This is expected, be-
cause the easy examples are able to leverage the early exit
mechanism. However, as the batch size increases, or when
the difficulty changes, EE-DNNs become worse as they are
unable to take advantage of the GPU parallelism (as in the
previous experiment), or the exit checking overheads accumu-
late. The non-EE models perform poorly when the workload
consists of a large fraction of easy inputs, but are able to pro-
vide good performance when batch sizes are large or inputs
are hard, requiring the entire predictive power of the model.

In contrast, 𝐸3 is able to effectively adapt to the require-
ments of the workload. When the workload is skewed towards
easy inputs, 𝐸3 behaves like an EE-DNN model. The profiler
is able to capture the hardness quickly, and the optimizer
is able to split the model to achieve good performance, re-
gardless of the batch size. The same adaptation applies when
the workload becomes mostly hard. Thus, 𝐸3 behaves simi-
lar to the non early-exit model in this case, with the added

BERT-BASE DeeBERT E3

Homogeneous

0

20

40

60

80

La
te

nc
y

(m
s)

BERT-BASE DeeBERT E3

Heterogeneous
Figure 17. 𝐸3 is able to meet SLO constraints while providing
lower inference latencies at quartiles.

benefit of being able to leverage heterogeneity through its
model-parallelism based execution.

5.5 Latency Implications

Since 𝐸3 depends on a split-execution model (where parts of
a model may be executed on different GPUs), and EE-DNNs
impose exit-checking overheads, it is natural to assume that
the benefits of 𝐸3 come at the cost of increased latency. To
evaluate the implications, we measure the latencies incurred
by 𝐸3, BERT and DeeBERT over 100K inferences. Figure 17
shows the median, quartiles, min and max latencies incurred
by the three techniques in homogeneous and heterogeneous
settings. The workload mix comprised of easy and hard ex-
amples, their ratio was fixed to be 50:50 and batch-size was
set to 8 to meet the SLO.
𝐸3 attains the lowest min, median, 25th-%ile and 75th-%ile

latencies across the board, which may seem counter-intuitive.
While 𝐸3 would incur additional latency compared to a non-
EE model, this additional latency is incurred only by a fraction
of the inputs. In contrast, in the non-EE model, every input
incurs the same latency. Typically, only the hard inputs incur
this penalty in 𝐸3, which affects the tail (max) latency. Even
then, the SLO is not violated, as 𝐸3’s optimizer considers
the workload’s current hardness ratio using its online batch
profile (§3.1) and the network overhead in determining the
splits (§3.2).

5.6 Generality to EE Architecture

Here, we show that 𝐸3’s techniques are general and can be
applied to different EE-DNN architectures. For this, we apply
𝐸3 to PABEE [73], an EE-DNN model based on BERT that
uses a sophisticated counter based mechanism to decide on
the exit choice. This model represents a different architecture
compared to DeeBERT. We use the setup from §5.1; fig. 18
shows that 𝐸3 is able to provide upto 1.55× higher goodput
compared to PABEE.

5.7 Extremely Bursty Workloads / Open-loop Client

Until now, we have assumed arrival patterns that mimic our
production setting (i.e., there are enough requests to warrant
batching continuously) that we believe emulates a real-world
setting. Here, we evaluate 𝐸3’s performance in an extremely
bursty scenario. Due to the lack of open-source inference
workloads, we use the request arrival rate of new tweets in
the Twitter trace [1] used in previous work [30, 56], scaled to

have an average request rate of 1000 req/sec. Figure 19 shows
that 𝐸3 is able to maintain its performance even when the
arrivals are very bursty. Further, 𝐸3 attains 29% improvement
in goodput over DeeBERT, and 16% improvement over BERT-
BASE. While the improvements over non-EE model may
seem low, we note that the Twitter trace has extreme bursts
and long periods of inactivity (amplified when scaling to
high average request rates) due to which the GPU utilization
remains under 50%, resulting in little batching opportunities.

5.8 Microbenchmarks

5.8.1 Overheads Since the optimizer uses a dynamic pro-
gramming based solution to determine the optimal number
of splits and the GPUs on which the splits should be run, we
investigate if the optimizer could become an overhead. To do
so, we measure the time taken for the optimizer to provide
an output, as the number of variables (GPUs and the num-
ber of layers in the EE-DNN) change. fig. 20 shows that the
optimizer is lightweight.

5.8.2 Efficacy of 𝐸3’s Batch Profile Estimation 𝐸3 de-
pends on its online batch estimation (§3.1) to determine the
model splits. We evaluated this technique as follows. We place
two cut points on the model (based on the workload), and
estimate the batch size at these cut points at the beginning
of every two minutes windows for an input batch size of 8.
We then compared the average batch size seen during the two
minutes against our prediction. Figure 21 shows the predicted
and the actual batch sizes on the two cuts for 10 such win-
dows. We can observe from the results that 𝐸3’s prediction
closely matches reality.

5.8.3 Batch Profile Estimation Sensitivity Analysis Al-
though our batch profile estimation works in practice, we now
evaluate how errors in prediction can affect 𝐸3. In particular,
we evaluate the gains lost due to incorrect predictions, since
the correctness of 𝐸3’s execution is not affected by prediction
errors (§3.1). For this evaluation, we deliberately introduce
errors in the prediction as follows. We consider the Llama3.1-
8b model setup in §5.1.3. For different input batch sizes, we
change the prediction to include errors ranging from 0% (per-
fect prediction) to 100%. For example, if the batch profiler
estimates an actual batch shrinkage of 50%, the expected
batch size at the end of the first split is 8 with 0% error, and
12 with 50% error for an input batch size of 16. We depict the
results in fig. 22. We note a slight decrease in the goodput ob-
tained by 𝐸3 when the prediction errors are within reasonable
ranges. For an error of 20%, the goodput loss is approxi-
mately 4-8%. As expected, larger errors in prediction leads to
increased loss in goodput, with substantial errors leading to
worse performance for 𝐸3 compared to vanilla models. How-
ever, significant errors can be detected easily and serve as a
signal for triggering 𝐸3’s optimizer to correct them.

1 2 4 8
Batch size

0
500

1000
1500
2000
2500
3000
3500

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

79
6 97

3

98
5

15
42 16
32 19

04

19
08

17
64

23
73

21
06

17
17

26
66

BERT-LARGE
PABEE
E3

Figure 18. 𝐸3’s techniques are general
and can apply to many EE-DNN archi-
tectures.

0 200 400 600 800 1000
Goodput (samples/sec)

BERT-BASE

DeeBERT

E3

Figure 19. 𝐸3 maintains its performance
when requests are extremely bursty
(Here, GPU utilization is less than 50%).

Model Overhead (s)
Homogeneous Heterogeneous

ResNet50 1.13 2.62
BERT-BASE 0.87 2.09

BERT-LARGE 1.53 3.63

Figure 20. 𝐸3’s optimizer is lightweight and in-
curs low overheads to find the optimal split and
resources needed for a EE-DNN.

0
2
4
6
8

Ba
tc

h
siz

e

1 2 3 4 5 6 7 8 9 10
Scheduling window

0
1
2
3
4

Predicted Actual

Figure 21. Batch profile estimation closely matches reality.

0 10 20 30 40 50 60 70 80 90 100
Prediction error (%)

0

200

400

600

800

1000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

Input batch size = 8
Input batch size = 16

Figure 22. 𝐸3’s gains lost due to misprediction is minimal.

5.8.4 Impact of Error Tolerance We investigate how the
error tolerance affects 𝐸3’s ability to provide benefits by vary-
ing the allowable error. Recall that the entropy value deter-
mines the error, hence we vary the exit entropy from 0.3 to
0.5, and show the results of the experiment in fig. 23. We note
that tolerances outside these ranges are typically not useful.
At low entropy values, none of the inputs are allowed to exit
even if they could have. This makes early exits not useful.
On the other hand, at high entropy values, all the inputs exit
early, but at the cost of incurring a higher error. As we see,
𝐸3 is able to identify this, and tune the splits accordingly. If
the user is willing to afford more errors, 𝐸3 is able to provide
better goodputs, up to 43% higher compared to DeeBERT.

5.8.5 Impact of SLO SLOs determine the max batch size
that can be created; a strict SLO translates to fewer batching
possibilities and hence smaller batches, and vice-versa. We
consider SLOs from 25-1000ms and translate them to the
max batch sizes that can be supported. For each SLO and
max batch size, we evaluate 𝐸3 and its comparisons in fig. 24.
When the SLO is small, batching opportunities are virtually
nil. At small batch sizes, DeeBERT (and EE-DNNs in general)
offer compelling advantage over BERT. 𝐸3’s optimizer is able

1 2
0.3

4 8 1 2
0.4

4 8 1 2
0.5

4 8
0

2000

4000

6000

8000

10000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

16
32 19

37
19

21
30

88
30

70
32

30
60

25
47

87
63

06 64
84

48
48

68
21

16
32 22

14
21

86
30

88
31

74 35
04

60
25

53
85

71
32

64
84

52
29

75
50

16
32 24

47
23

36 30
88 35

46 38
52

60
25

58
30

76
63

64
84

58
58

81
47BERT-BASE DeeBERT E3

Figure 23. As the error tolerance increases, 𝐸3 is able to signifi-
cantly improve its (already good) performance.

to adapt; at a batch size of 1, 𝐸3’s goodput is just 1% lower
compared to DeeBERT. However, as batching opportunities
arise, both 𝐸3 and BERT are able to leverage the parallelism
offered by the GPU. Here, 𝐸3 provides up to 63% (34%)
higher goodput compared to DeeBERT (BERT).

5.8.6 Relaxing 𝐸3’s Assumptions Here we evaluate the
usefulness of 𝐸3’s if it is able to control the EE-DNN follow-
ing the simple use-case described in §3.4. In this experiment,
we assume that 𝐸3 is able to disable the exits within a split (ex-
cept the last one which is required) which are not useful. The
results in fig. 25 show that 𝐸3 is able improve its performance
by up to 16% by avoiding exit-checking overheads.

5.8.7 Impact of Model Parallelism With model parallelism
turned off, 𝐸3 must execute the splits in the same GPU se-
rially, waiting for all copies of a split to finish before it can
start executing the next split. Figure 26 shows that the abil-
ity to execute the splits across multiple GPUs significantly
improves 𝐸3’s performance.

5.9 Shortcomings

There are two shortcomings of 𝐸3. First, 𝐸3 is designed for
workloads where there are enough opportunities to batch the
input. When this opportunity ceases to exist, 𝐸3 does not
provide benefits. Figures 7 and 8 show that for batch size 1,
𝐸3 is up to 3% worse compared to the EE-DNN model. Our
production experience indicates that small batches are rare in
the real-world, hence we believe 𝐸3 to be useful in a majority
of cases. Second, EE-DNNs are built on the assumption that
the workload consists of a mix of easy and hard examples.
When the workload is predominantly hard, 𝐸3 is unable to
find optimal splits or batching opportunities for its model

1 2 4 8 16 32 64
Batch size

0

2000

4000

6000

8000

10000

Go
od

pu
t (

sa
m

pl
es

/s
ec

) BERT-BASE
DeeBERT
E3

Figure 24. 𝐸3’s performance improves as
batching opportunity increases.

1 2 4 8
Batch size

0

5

10

15

20

Go
od

pu
t i

m
pr

ov
em

en
t (

%
)

6.99

10.87

13.99

16.0

Figure 25. Granting 𝐸3 the ability to con-
trol the EE-DNN boosts its performance.

2 4
Model Parallelism OFF

8 2 4
Model Parallelism ON

8
0

2000

4000

6000

8000

10000

Go
od

pu
t (

sa
m

pl
es

/s
ec

)

29
77 33

36 35
85

54
23 60

95 65
04

52
82 59

90 65
93

32
30 35

04
65

93

63
06 71

32 76
63

68
21 75

50 81
47BERT-BASE DeeBERT E3

Figure 26. 𝐸3 is able to parallelize the execu-
tion of EE-DNN model splits across GPUs.

parallel model. Figure 16 shows that 𝐸3 is up to 23% worse
compared to the non-EE model when the workload is 80%
hard. Compressed models are not likely to be useful in such
cases either, and would incur significant accuracy loss.

6 Additional Related Work

Deep learning systems typically focus on improving the per-
formance of deep learning training [40, 53, 55]. In addition
to the data parallelism and model parallelism provided by
popular open-source frameworks such as PyTorch [8] and
TensorFlow [9], recent works have proposed hybrid paral-
lelism strategies. Further, pipelining and compression has
been shown to boost training performance. Though the opti-
mizations introduced for training can carry over, the underly-
ing assumptions make inference face its own set of challenges.
Model serving systems are designed to maximize system
throughput under strict latency constraints, often using model
replicas. Prior studies have primarily focused on sophisticated
cluster-level scheduling, placement, and co-ordination strate-
gies for inference queries [20, 29, 30, 56, 61]. However, to the
best of our knowledge, none of the existing works on infer-
ence systems focus on leveraging early-exit networks.More
recently, researchers have proposed ways to mitigate the in-
efficiencies associated with the iterative style processing in
autoregressive models [13, 45, 72]. These are orthogonal to
our work, since they focus on optimizations between itera-
tions, while 𝐸3’s focus is on optimizations within an iteration.

Several early exit networks (§2.2) have been proposed to
accelerate inference of vision models and more recently for
language models (e.g., BERT and similar multi-layer trans-
former models) by leveraging varying input sample complex-
ity. Key question in EE-DNNs is the criteria used to decide
whether to exit early or continue to the next (more expen-
sive and more accurate) classifier. At inference time, if the
certainty level is higher than a pre-defined threshold, the sam-
ple performs early exiting. Previous studies have proposed
various heuristic criteria to judge certainty level. Confidence-
based criterion [14, 49, 59, 68] interpret the label scores
output by softmax as confidence scores. Entropy-based cri-
terion [69, 70] rely on the entropy of predicted probability
distribution to be smaller than pre-defined threshold. Counter-
based criterion [73] require off-ramps classifiers to contin-
uously generate identical predictions for pre-defined times.

Voting-based criterion [63], inspired by the ensemble tech-
nique, requires a pre-defined number of off-ramp classifiers
to reach an agreement. Model-based criterion [15] uses ad-
ditional lightweight neural networks to predict the exiting
decisions. [32] discusses how to train ramps in EE-DNNs.
Additionally, several approaches choose not to rely on heuris-
tic criteria, and introduce an additional module which learns-
to-exit. Often it is a simple one-layer fully-connected network,
which is shared among all off-ramps and outputs the certainty
level [47, 74]. As we show in this paper, EE-DNNs suffer
from fundamental challenges (§2). 𝐸3 overcomes these to
make EE-DNNs practical for inference.

Mixture-of-Experts (MoE) are dynamic neural networks
that support input adaptation like EE-DNNs, but by routing
inputs to different sub-networks [25, 31, 38, 48, 60, 71]. We
believe that 𝐸3 is complementary, e.g., each expert can em-
ploy EE techniques. BE3R [50] poses EEs as a MoE problem
where each expert is the model replica with an increasing num-
ber of layers and routing sub-batches of inputs to the right
replica. This avoids the batching challenge but relies on rout-
ing correctness, sufficiently large sub-batches per expert, and
more resources. Brainstorm [21] optimizes the execution of
dynamic neural networks in the GPU. Such optimizations can
complement 𝐸3 and boost its performance further. Tabi [67]
runs inputs through a smaller model, only invokes a larger
model for low-confidence inputs, and suffers from similar
batching issues that can be addressed with techniques in 𝐸3.

7 Conclusion
𝐸3 addresses the detrimental relationship between compute
savings (from exits) and resource utilization (from batching)
that EE-DNNs fundamentally bring. The main idea behind
𝐸3 is to split and replicate layer blocks to keep batch sizes
constant throughout execution and efficiently take advantage
of diverse resources. We find that 𝐸3 can deliver up to 1.74×
improvement in goodput (for a fixed cost) or 1.78× reduc-
tion in cost (for a fixed goodput). Further, 𝐸3’s wins extend
to autoregressive LLMs (up to 3.8×) and can complement
compression by boosting its goodput by up to 1.67×.

Acknowledgements. We thank the SOSP reviewers, and our
shepherd for their help in improving this work. During the
initial phases of this work, Anand Iyer was a researcher and
Swapnil Gandhi was an intern at Microsoft Research.

References
[1] [n. d.]. ArchiveTeam JSON Download of Twitter Stream 2018-04.

https://archive.org/details/archiveteam-twitter-stream-2018-04/.
[2] [n. d.]. GLUE Benchmark. https://gluebenchmark.com/.
[3] [n. d.]. Llama Model Family. https://www.llama.com/.
[4] [n. d.]. NVIDIA Triton Inference Server. https://developer.nvidia.

com/nvidia-triton-inference-server.
[5] [n. d.]. ONNX Run Time. https://github.com/microsoft/

onnxruntime.
[6] [n. d.]. ONNX Runtime serves over 1 trillion daily inferences at

Microsoft. https://news.microsoft.com/source/features/ai/how-
microsofts-bet-on-azure-unlocked-an-ai-revolution/.

[7] [n. d.]. Open Neural Network Exchange (ONNX). https://onnx.ai/.
[8] [n. d.]. PyTorch. https://pytorch.org/.
[9] [n. d.]. TensorFlow. https://www.tensorflow.org/.

[10] [n. d.]. TorchServe. https://pytorch.org/serve/.
[11] [n. d.]. Transformers. https://github.com/huggingface/

transformers.
[12] 2021. Live Video Analytics with Microsoft Rocket for reducing edge

compute costs. https://techcommunity.microsoft.com/t5/internet-
of-things/live-video-analytics-with-microsoft-rocket-for-
reducing-edge/ba-p/1522305

[13] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree Mohan, Nipun
Kwatra, Bhargav Gulavani, Alexey Tumanov, and Ramachandran Ram-
jee. 2024. Taming Throughput-Latency Tradeoff in LLM Inference
with Sarathi-Serve. In 18th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 24). USENIX Association, Santa
Clara, CA, 117–134. https://www.usenix.org/conference/osdi24/
presentation/agrawal

[14] Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. 2023.
Fast and Robust Early-Exiting Framework for Autoregressive Lan-
guage Models with Synchronized Parallel Decoding. In Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.).
Association for Computational Linguistics, Singapore, 5910–5924.
https://doi.org/10.18653/v1/2023.emnlp-main.362

[15] Arjun Balasubramanian, Adarsh Kumar, Yuhan Liu, Han Cao, Shivaram
Venkataraman, and Aditya Akella. 2021. Accelerating deep learning
inference via learned caches. arXiv preprint arXiv:2101.07344 (2021).

[16] Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Barry Haddow,
Matthias Huck, Chris Hokamp, Philipp Koehn, Varvara Logacheva,
Christof Monz, Matteo Negri, Matt Post, Carolina Scarton, Lucia Spe-
cia, and Marco Turchi. 2015. Findings of the 2015 Workshop on Statis-
tical Machine Translation. In Proceedings of the Tenth Workshop on Sta-
tistical Machine Translation. Association for Computational Linguis-
tics, Lisbon, Portugal, 1–46. https://doi.org/10.18653/v1/W15-3001

[17] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems 33 (2020),
1877–1901.

[18] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2017. A Survey
of Model Compression and Acceleration for Deep Neural Networks.
https://doi.org/10.48550/ARXIV.1710.09282

[19] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski,
Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the
Surprising Difficulty of Natural Yes/No Questions. In NAACL.

[20] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,
Joseph E. Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency
Online Prediction Serving System. In 14th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 17). USENIX Asso-
ciation, Boston, MA, 613–627. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/crankshaw

[21] Weihao Cui, Zhenhua Han, Lingji Ouyang, Yichuan Wang, Ningxin
Zheng, Lingxiao Ma, Yuqing Yang, Fan Yang, Jilong Xue, Lili Qiu, Li-
dong Zhou, Quan Chen, Haisheng Tan, and Minyi Guo. 2023. Optimiz-
ing Dynamic Neural Networks with Brainstorm. In 17th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 23).
USENIX Association, Boston, MA, 797–815. https://www.usenix.
org/conference/osdi23/presentation/cui

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. 2009. ImageNet: A large-scale hierarchical image database. In
2009 IEEE Conference on Computer Vision and Pattern Recognition.
248–255. https://doi.org/10.1109/CVPR.2009.5206848

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. arXiv e-prints, Article arXiv:1810.04805
(Oct. 2018), arXiv:1810.04805 pages. arXiv:1810.04805 [cs.CL]

[24] Angela Fan, Edouard Grave, and Armand Joulin. 2020. Reducing Trans-
former Depth on Demand with Structured Dropout. In International
Conference on Learning Representations. https://openreview.net/
forum?id=SylO2yStDr

[25] William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch trans-
formers: Scaling to trillion parameter models with simple and efficient
sparsity. The Journal of Machine Learning Research 23, 1 (2022),
5232–5270.

[26] Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer.
2019. SAMSum Corpus: A Human-annotated Dialogue Dataset for Ab-
stractive Summarization. In Proceedings of the 2nd Workshop on New
Frontiers in Summarization. Association for Computational Linguistics.
https://doi.org/10.18653/v1/d19-5409

[27] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. 2020. Compress-
ing BERT: Studying the Effects of Weight Pruning on Transfer Learn-
ing. In Proceedings of the 5th Workshop on Representation Learning
for NLP. Association for Computational Linguistics, Online, 143–155.
https://doi.org/10.18653/v1/2020.repl4nlp-1.18

[28] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.
2021. Knowledge distillation: A survey. International Journal of
Computer Vision 129, 6 (2021), 1789–1819.

[29] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs
like Clockwork: Performance Predictability from the Bottom Up.
In 14th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 20). USENIX Association, 443–462. https:
//www.usenix.org/conference/osdi20/presentation/gujarati

[30] Jashwant Raj Gunasekaran, Cyan Subhra Mishra, Prashanth Thi-
nakaran, Mahmut Taylan Kandemir, and Chita R. Das. 2021. Cock-
tail: Leveraging Ensemble Learning for Optimized Model Serving in
Public Cloud. arXiv e-prints, Article arXiv:2106.05345 (June 2021),
arXiv:2106.05345 pages. arXiv:2106.05345 [cs.DC]

[31] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and
Yulin Wang. 2021. Dynamic neural networks: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 44, 11 (2021),
7436–7456.

[32] Yizeng Han, Yifan Pu, Zihang Lai, Chaofei Wang, Shiji Song, Junfeng
Cao, Wenhui Huang, Chao Deng, and Gao Huang. 2022. Learning to
Weight Samples for Dynamic Early-Exiting Networks. In European
Conference on Computer Vision. Springer, 362–378.

[33] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Camp-
bell. 2019. TicTac: Accelerating Distributed Deep Learning with
Communication Scheduling. In Proceedings of Machine Learn-
ing and Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.),
Vol. 1. 418–430. https://proceedings.mlsys.org/paper/2019/file/
84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf

[34] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, James Law, Kevin Lee, Jason Lu, Pieter Noordhuis,
Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. 2018. Applied

https://archive.org/details/archiveteam-twitter-stream-2018-04/
https://gluebenchmark.com/
https://www.llama.com/
https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
https://github.com/microsoft/onnxruntime
https://github.com/microsoft/onnxruntime
https://news.microsoft.com/source/features/ai/how-microsofts-bet-on-azure-unlocked-an-ai-revolution/
https://news.microsoft.com/source/features/ai/how-microsofts-bet-on-azure-unlocked-an-ai-revolution/
https://onnx.ai/
https://pytorch.org/
https://www.tensorflow.org/
https://pytorch.org/serve/
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://techcommunity.microsoft.com/t5/internet-of-things/live-video-analytics-with-microsoft-rocket-for-reducing-edge/ba-p/1522305
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://www.usenix.org/conference/osdi24/presentation/agrawal
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://doi.org/10.18653/v1/W15-3001
https://doi.org/10.48550/ARXIV.1710.09282
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/osdi23/presentation/cui
https://www.usenix.org/conference/osdi23/presentation/cui
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://doi.org/10.18653/v1/d19-5409
https://doi.org/10.18653/v1/2020.repl4nlp-1.18
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://arxiv.org/abs/2106.05345
https://proceedings.mlsys.org/paper/2019/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf

Machine Learning at Facebook: A Datacenter Infrastructure Perspec-
tive. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/
HPCA.2018.00059

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
Residual Learning for Image Recognition. In CVPR.

[36] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distill-
ing the Knowledge in a Neural Network. arXiv e-prints, Ar-
ticle arXiv:1503.02531 (March 2015), arXiv:1503.02531 pages.
arXiv:1503.02531 [stat.ML]

[37] Siu Lau Ho and Min Xie. 1998. The use of ARIMA models for relia-
bility forecasting and analysis. Computers & industrial engineering 35,
1-2 (1998), 213–216.

[38] Weizhe Hua, Yuan Zhou, Christopher M De Sa, Zhiru Zhang, and
G Edward Suh. 2019. Channel gating neural networks. Advances in
Neural Information Processing Systems 32 (2019).

[39] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der
Maaten, and Kilian Q. Weinberger. 2018. Multi-Scale Dense Networks
for Resource Efficient Image Classification. arXiv:1703.09844 [cs.LG]

[40] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao
Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui
Wu, et al. 2019. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Advances in neural information processing
systems. 103–112.

[41] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Jun-
jie Qian, Wencong Xiao, and Fan Yang. 2019. Analysis of Large-
Scale Multi-Tenant GPU Clusters for DNN Training Workloads.
In 2019 USENIX Annual Technical Conference (USENIX ATC 19).
USENIX Association, Renton, WA, 947–960. https://www.usenix.
org/conference/atc19/presentation/jeon

[42] Myeongjae Jeon, Shivaram Venkataraman, Junjie Qian, Amar Phan-
ishayee, Wencong Xiao, and Fan Yang. 2018. Multi-tenant gpu clusters
for deep learning workloads: Analysis and implications. Technical
report, Microsoft Research (2018).

[43] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li,
Fang Wang, and Qun Liu. 2019. TinyBERT: Distilling BERT for Natu-
ral Language Understanding. arXiv e-prints, Article arXiv:1909.10351
(Sept. 2019), arXiv:1909.10351 pages. arXiv:1909.10351 [cs.CL]

[44] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben
Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gul-
land, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,
Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le,
Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacK-
ean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagara-
jan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark
Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes
Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Va-
sudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun
Yoon. 2017. In-Datacenter Performance Analysis of a Tensor Process-
ing Unit. SIGARCH Comput. Archit. News 45, 2 (jun 2017), 1–12.
https://doi.org/10.1145/3140659.3080246

[45] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin
Zheng, Cody Hao Yu, Joseph Gonzalez, Hao Zhang, and Ion Stoica.
2023. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In Proceedings of the 29th Symposium
on Operating Systems Principles (Koblenz, Germany) (SOSP ’23).
Association for Computing Machinery, New York, NY, USA, 611–626.
https://doi.org/10.1145/3600006.3613165

[46] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan
Klein, and Joey Gonzalez. 2020. Train big, then compress: Rethink-
ing model size for efficient training and inference of transformers. In
International Conference on machine learning. PMLR, 5958–5968.

[47] Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin
He. 2021. A Global Past-Future Early Exit Method for Accelerat-
ing Inference of Pre-trained Language Models. In Proceedings of
the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics, Online, 2013–2023.
https://doi.org/10.18653/v1/2021.naacl-main.162

[48] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. 2017. Runtime neural
pruning. Advances in neural information processing systems 30 (2017).

[49] Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi
Ju. 2020. FastBERT: a Self-distilling BERT with Adaptive Inference
Time. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics,
Online, 6035–6044. https://doi.org/10.18653/v1/2020.acl-main.
537

[50] Sourab Mangrulkar, Ankith MS, and Vivek Sembium. 2022. BE3R:
BERT based Early-Exit Using Expert Routing. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. 3504–3512.

[51] Sébastien Marcel and Yann Rodriguez. 2010. Torchvision the Machine-
Vision Package of Torch. In Proceedings of the 18th ACM International
Conference on Multimedia (Firenze, Italy) (MM ’10). Association for
Computing Machinery, New York, NY, USA, 1485–1488. https:
//doi.org/10.1145/1873951.1874254

[52] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro
Matsukawa, and Hassan Ghasemzadeh. 2020. Improved knowledge
distillation via teacher assistant. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 34. 5191–5198.

[53] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN
Training. In Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19).
Association for Computing Machinery, New York, NY, USA, 1–15.
https://doi.org/10.1145/3341301.3359646

[54] Jon Porter. 2023. ChatGPT continues to be one of the fastest-growing
services ever. https://www.theverge.com/2023/11/6/23948386/
chatgpt-active-user-count-openai-developer-conference.

[55] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie
Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.
Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-
Optimized Deep Learning. In 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association,
1–18. https://www.usenix.org/conference/osdi21/presentation/
qiao

[56] Francisco Romero, Qian Li, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serv-
ing. In 2021 USENIX Annual Technical Conference (USENIX ATC
21). USENIX Association, 397–411. https://www.usenix.org/
conference/atc21/presentation/romero

[57] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper
and lighter. arXiv preprint arXiv:1910.01108 (2019).

[58] Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri,
Vinh Tran, Yi Tay, and Donald Metzler. 2022. Confident adaptive lan-
guage modeling. Advances in Neural Information Processing Systems
35 (2022), 17456–17472.

[59] Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge,
and Noah A. Smith. 2020. The Right Tool for the Job: Matching
Model and Instance Complexities. In Proceedings of the 58th Annual

https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1703.09844
https://www.usenix.org/conference/atc19/presentation/jeon
https://www.usenix.org/conference/atc19/presentation/jeon
https://arxiv.org/abs/1909.10351
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.18653/v1/2021.naacl-main.162
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.18653/v1/2020.acl-main.537
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/1873951.1874254
https://doi.org/10.1145/3341301.3359646
https://www.theverge.com/2023/11/6/23948386/chatgpt-active-user-count-openai-developer-conference
https://www.theverge.com/2023/11/6/23948386/chatgpt-active-user-count-openai-developer-conference
https://www.usenix.org/conference/osdi21/presentation/qiao
https://www.usenix.org/conference/osdi21/presentation/qiao
https://www.usenix.org/conference/atc21/presentation/romero
https://www.usenix.org/conference/atc21/presentation/romero

Meeting of the Association for Computational Linguistics. Association
for Computational Linguistics, Online, 6640–6651. https://doi.org/
10.18653/v1/2020.acl-main.593

[60] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis,
Quoc Le, Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large
neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538 (2017).

[61] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019.
Nexus: A GPU Cluster Engine for Accelerating DNN-Based Video
Analysis. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Asso-
ciation for Computing Machinery, New York, NY, USA, 322–337.
https://doi.org/10.1145/3341301.3359658

[62] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir
Gholami, Michael W. Mahoney, and Kurt Keutzer. 2020. Q-BERT:
Hessian Based Ultra Low Precision Quantization of BERT. Proceedings
of the AAAI Conference on Artificial Intelligence 34, 05 (Apr. 2020),
8815–8821. https://doi.org/10.1609/aaai.v34i05.6409

[63] Tianxiang Sun, Yunhua Zhou, Xiangyang Liu, Xinyu Zhang, Hao Jiang,
Zhao Cao, Xuanjing Huang, and Xipeng Qiu. 2021. Early Exiting
with Ensemble Internal Classifiers. CoRR abs/2105.13792 (2021).
arXiv:2105.13792 https://arxiv.org/abs/2105.13792

[64] Surat Teerapittayanon, Bradley McDanel, and H. T. Kung. 2017.
BranchyNet: Fast Inference via Early Exiting from Deep Neural
Networks. arXiv e-prints, Article arXiv:1709.01686 (Sept. 2017),
arXiv:1709.01686 pages. arXiv:1709.01686 [cs.NE]

[65] John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao
Jia, Minjia Zhang, Ravi Netravali, and Guoqing Harry Xu. 2022. Bam-
boo: Making Preemptible Instances Resilient for Affordable Training
of Large DNNs. https://doi.org/10.48550/ARXIV.2204.12013

[66] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-
Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open and Efficient
Foundation Language Models. arXiv:2302.13971 [cs.CL] https:
//arxiv.org/abs/2302.13971

[67] Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 2023. Tabi:
An efficient multi-level inference system for large language models.

In Proceedings of the Eighteenth European Conference on Computer
Systems. 233–248.

[68] Keli Xie, Siyuan Lu, Meiqi Wang, and Zhongfeng Wang. 2021. Elbert:
Fast Albert with Confidence-Window Based Early Exit. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 7713–7717. https://doi.org/10.1109/
ICASSP39728.2021.9414572

[69] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. 2020.
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference.
In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics,
Online, 2246–2251. https://doi.org/10.18653/v1/2020.acl-main.
204

[70] Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin. 2021. BERxiT:
Early Exiting for BERT with Better Fine-Tuning and Extension to
Regression. In Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Linguistics: Main Volume.
Association for Computational Linguistics, Online, 91–104. https:
//doi.org/10.18653/v1/2021.eacl-main.8

[71] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. 2019.
Condconv: Conditionally parameterized convolutions for efficient infer-
ence. Advances in Neural Information Processing Systems 32 (2019).

[72] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim,
and Byung-Gon Chun. 2022. Orca: A Distributed Serving System
for Transformer-Based Generative Models. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 22).
USENIX Association, Carlsbad, CA, 521–538. https://www.usenix.
org/conference/osdi22/presentation/yu

[73] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke
Xu, and Furu Wei. 2020. BERT Loses Patience: Fast and
Robust Inference with Early Exit. In Advances in Neural In-
formation Processing Systems, Vol. 33. Curran Associates, Inc.,
18330–18341. https://proceedings.neurips.cc/paper/2020/file/
d4dd111a4fd973394238aca5c05bebe3-Paper.pdf

[74] Wei Zhu. 2021. LeeBERT: Learned Early Exit for BERT with cross-
level optimization. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Pa-
pers). Association for Computational Linguistics, Online, 2968–2980.
https://doi.org/10.18653/v1/2021.acl-long.231

https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.18653/v1/2020.acl-main.593
https://doi.org/10.1145/3341301.3359658
https://doi.org/10.1609/aaai.v34i05.6409
https://arxiv.org/abs/2105.13792
https://arxiv.org/abs/2105.13792
https://arxiv.org/abs/1709.01686
https://doi.org/10.48550/ARXIV.2204.12013
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/ICASSP39728.2021.9414572
https://doi.org/10.1109/ICASSP39728.2021.9414572
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2020.acl-main.204
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
https://www.usenix.org/conference/osdi22/presentation/yu
https://www.usenix.org/conference/osdi22/presentation/yu
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.231

	Abstract
	1 Introduction
	2 Background
	2.1 Model Compression Approaches
	2.2 Early-Exit Networks
	2.3 Challenge: Batching in EE-DNNs
	2.4 Real World Importance

	3 E3 Design
	3.1 Online Batch Profile Estimation
	3.2 Dynamic Programming based Optimization
	3.3 Heterogeneity Aware Model-Parallel Execution
	3.4 Improving E3 by Relaxing Assumptions

	4 End-to-End Inference & Implementation
	5 Evaluation
	5.1 Goodput Improvements
	5.2 Heterogeneity in Compute Resources
	5.3 Cost Effectiveness
	5.4 Workload Adaptability
	5.5 Latency Implications
	5.6 Generality to EE Architecture
	5.7 Extremely Bursty Workloads / Open-loop Client
	5.8 Microbenchmarks
	5.9 Shortcomings

	6 Additional Related Work
	7 Conclusion
	References

