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1 Introduction

Modern database management systems (DBMSs) expose
hundreds of configuration knobs that collectively deter-
mine their runtime behavior. Those knobs control, for
example, the amount of memory used for cache and the
maximum number of concurrent reads. If the knobs are
optimally configured, the database systems can achieve
higher performance and efficiency. The traditional prac-
tice for manual DBMS tuning is where the database ad-
ministrators (DBAs) use their expertise and manually
experiment by changing individual knobs to understand
their effectiveness on the entire workload. However,
manual DBMS tuning is a daunting task even for expert
DBAs because of the following reasons: (1) Complex-
ity: Modern DBMSs have hundreds of interdependent
configuration knobs, and most knobs take in continuous
values. As a result, the configuration space for DBMS
tuning is orders of magnitude larger than those of tra-
ditional systems (e.g., file systems) [8]. (2) Hardware-
dependent: Different hardware might have different op-
timal configurations. e.g. a configuration that is good
for SSD might not work for HDD [1]. (3) Workload-
dependent: The optimal configuration for one applica-
tion might be sub-optimal for another [19]. (4) DBMS-
dependent: Two DBMSs may use different names for
the same knob [19]. (5) Inter-dependent: The knobs are
also dependent of each other (configuring one knob could
impact the other knobs). Moreover, different DBMSs
use different internal structures, so optimal configura-
tions are not generic across different DBMSs. As a re-
sult, recent research has focused on the automatic tuning
of the configuration knobs.

To automate this process, approaches like writing static
rules (hard-coded) to configure the knobs [20] were in-
troduced, but these approaches were not flexible. They
could fail to work well on a new set of unseen workloads
which were not thought about during the development of
these rules. As they tend to be very rigid, it was com-
plicated to alter the rules by adding new functionalities.
Also, they fail to achieve improvement in some of the
possible optimizations.

Figure 1: Performance measurements for the YCSB
workload running on MySQL (v5.6) using different con-
figuration settings [19].

Recently, there has been several automatic tuning meth-
ods and ML-based automatic tuning used to solve this
problem, i.e., Bayesian Optimization, Reinforcement
Learning, Deep Neural Networks, Gaussian Process Re-
gression, etc. [2, 20, 22]. These approaches tend to per-
form better than the previous approaches taken as they
can identify some of the inherent correlations and op-
timize the configurations accordingly to maximize the
objective. Most of these approaches are also called
black-box optimization methods, which means that the
databases are treated as black-boxes and will give a per-
formance metric for each configuration they are asked to
run on. Therefore, it is important for the optimization
methods to use the information gathered so far in each
stage.

The most prominent ML-based approaches for database
tuning are Bayesian Optimization and Gaussian Pro-
cess [20]. However, the lack of comparison studies
makes it difficult for users to decide which optimization
method to employ given the production environment. We
compare the efficacy of existing online black-box opti-
mization methods for DBMS knob tuning given the im-
portance to understand the use of specific methods for
specific workloads on production-level DBMS systems
and the lack of prior comparison studies in this area.
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Figure 2: Workflow of online DBMS tuning.

2 Background

2.1 Online Database Tuning
State-of-the-art DBMS tuning services like Otter-
tune [19] mostly employ offline tuning, which requires
the customers to collect enough configuration samples
and build a knowledge base in advance. Then the opti-
mizer could make use of the knowledge to featurize the
current workload and leverage the corresponding tuning
strategy. It can be expensive to build such a knowledge
base. Besides, it’s nearly impossible to iterate over all
kinds of workloads. If the current workload cannot be
identified, it will be hard for the optimizer to give a rea-
sonable recommendation.

We evaluate the optimization approaches in an online
fashion. The optimizer starts from an empty data repos-
itory and gathers the knowledge as the tuning proceeds.
To explore more about the configuration space at the be-
ginning, we run 10 random configurations for the first
10 iterations. Then the optimizer will leverage the data
samples to give us recommendations and balances explo-
ration and exploitation.

2.2 High-Dimensional Bayesian Optimiza-
tion

Bayesian optimization (BO) is a well-known technique
for database tuning problems. It has been employed by
many state-of-the-art tuning services [19]. Here, we give
a brief introduction to Bayesian Optimization.

BO is often used to optimize an unknown and expen-
sive objective function. It can converge towards good
function values and avoid evaluating bad configurations.
BO leverages a surrogate model of the objective function
and refines the model as more data points are evaluated.
The acquisition function selects the next point to eval-
uate, while it balances exploration and exploitation by
choosing candidate points from uncertain and promising

regions.

While BO is an effective way for database tuning, it suf-
fers from the curse of dimensionality. Due to the limita-
tion of high-dimensional BO, Wang et al. proposed Ran-
dom EMbedding Bayesian Optimization (REMBO) [21]
to address the problem of scaling to high dimensions.
The motivation of REMBO is that although the objec-
tive function has a high-dimension setting, it is often
the case that the optimization problem has a low effec-
tive dimensionality. Kanellis et al. reported that tuning
just 5 "important" knobs can achieve 99% of the perfor-
mance obtained by tuning many knobs [8]. REMBO ran-
domly generates a projection matrix to transform a low-
dimensional vector to a high-dimensional one. We can
view this way as the high-dimensional search space be-
ing "projected" to a low-dimensional one. Then a low-
dimensional Bayesian optimization could be used to find
a good solution in this low-dimensional space.

3 Design
We design our online DBMS tuning workflow as shown
in Fig 2. The controller is responsible for running work-
loads and collecting metrics. After evaluating some con-
figuration, we register the current setting and result in the
data repository. The optimizer learns from previous sam-
ples and recommends a configuration to the controller.
The controller then deploys the new configuration and
starts the next iteration.

We choose three different black-box optimization strate-
gies for database tuning.

Uniform random search. We implement the uniform
random search algorithm (RANDOM) as our baseline.
We specify a lower bound and upper bound for each
knob. The algorithm randomly picks a value within the
range from a uniform distribution. Then, we will eval-
uate the configuration and record the best throughput
value we have seen.

Bayesian optimization. We employ the implementa-
tion of Bayesian Optimization in MLOS [5], which is an
open-source parameter tuning library maintained by Mi-
crosoft. For the first 10 iterations of each tuning session,
we randomly pick configurations to evaluate. After that,
we evaluate the configuration proposed by the optimizer.
However, we set the optimizer to generate a random point
every ten iterations so that it can fully explore the config-
uration space and escape from the local optima.

REMBO. We introduce REMBO on top of our
Bayesian Optimization implementation. The user should
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specify the number of dimensions in the embedding
space in advance. The algorithm first generates a ran-
dom projection matrix, and optimizes upon the low-
dimensional space. For each point proposed by the ac-
quisition function, we project the point to the original
space. Note that the point may be projected outside
the boundaries, the algorithm will pick the nearest point
on the boundary to avoid invalid configuration. Then,
we evaluate the projected point and set the throughput
as the target objection value of the corresponding low-
dimensional embedding. Finally, the Bayesian optimizer
will proceed to the next iteration.

4 Evaluation

4.1 Experiment Setup

We use Nautilus1, a framework for streamlining the
evaluation of DBMS configurations, to run experiments.
Nautilus takes in different configurations, runs them on
different workloads and hardware configurations, and re-
turns the metrics to the users. In our experiments, we
use throughput as a metric of performance. We use Post-
greSQL [18] as an example production-level DBMS.

We conduct the tuning experiments on three workloads
– YCSB-A, YCSB-B [4], and TPC-C [15]. YCSB
is a common set of workloads for evaluating the per-
formance of different "key-value" and "cloud" serving
stores. YCSB-A is update-heavy (50% reads, 50%
updates) and YCSB-B is read-heavy (95% reads, 5%
updates). TPC-C is an online transaction processing
(OLTP) benchmark. It is a mixture of read-only and
update-intensive transactions that simulate the activities
found in complex OLTP application environments. We
run 100 iterations on each tuning session and 5 random
seeds on each optimization strategy.

The hardware we run our experiments on is a single
CloudLab [16] node on the Wisconsin c220g5 cluster.
Each node is equipped with two Intel Xeon Silver 4114
10-core 2.20 GHz CPUs, 192GB of RAM, one 1 TB
HDD, and one 480 GB SATA SSD [3].

4.2 RANDOM, BO, and REMBO

We first evaluate the above three black-box optimization
approaches by tuning 27 preselected knobs and plotting
the optimum throughput achieved over each iteration in
Fig 3. Unless otherwise specified, we set the default
number of embedding space dimensions for REMBO to
be 4.

1https://github.com/uw-mad-dash/nautilus
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Figure 3: Optimum throughput achieved tuning 27 knobs
over iterations on three workloads.

REMBO and BO constantly outperform Random Search
across three workloads as we expected. REMBO per-
forms better than BO on YCSB-B and TPC-C, while
BO slightly outperforms REMBO in the later iterations
on YCSB-A workload. Since the REMBO optimizer
can only see a subspace, it is reasonable to assume that
REMBO cannot fully explore the configuration space,
thus BO is likely to outperform REMBO at the 100th
iteration. However, 27 knobs may be too many for BO
to handle. As a result, for YCSB-B and TPC-C, we no-
tice that REMBO actually achieves a higher throughput.
With more iterations, BO can explore more configuration
space and converge at a higher throughput.

We also observe a stair-shaped pattern when we employ
the BO or Random Search optimizer. When the opti-
mizer configures the value of a few important knobs,
the big performance leap will be captured. In con-
trast, REMBO uses a low-dimensional embedding for
DBMS tuning. As it distributes the important knobs
(dimensions) to the embedding space, we no longer ob-
serve such patterns in REMBO experiments. Instead, the
throughput curves grow in a more continuous way.

Moreover, we notice that REMBO achieves approxi-
mately 90% of the best throughput of the current tun-
ing session in the first 20 iterations. The surprisingly
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Figure 4: Values of four important knobs during a tuning
session on workload YCSB-B.

fast convergence speed can be leveraged to accelerate
DBMS tuning significantly. To figure out why REMBO
converges fast, we inspect four important knobs and plot
their values at each iteration in Fig 4. We can see that
REMBO can only optimize upon a restricted subspace,
so the values of each knob are more concentrated during
iterations. As a result, REMBO can explore the space
far more efficiently than BO does if the projection ma-
trix is set appropriately. Whether REMBO generates the
beneficial projection matrix is also one of the sources
of the variance. In addition, the clipping which hap-
pens during projection would be another probable rea-
son. When REMBO projects the embedding point to
the original space, it is likely to fall out of the bound-
ary. Since we specify the lower bound and upper bound
of each knob in advance, we clip the value of each knob
into the proper range to make sure it’s a valid configura-
tion. We find that the clipping happens on 22 knobs on
average across all five random seeds and all three work-
loads. Clipping helps the optimizer choose the more "ex-
treme" values compared to normal BO. For some impor-
tant knobs (e.g., default_statistics_target),
extreme values near lower or upper bounds may lead to
a significant performance leap.

4.3 Tuning a Few Important Knobs for
Near-Optimal Performance

Modern DBMSs have hundreds of interdependent con-
figuration knobs and most knobs take in continuous val-
ues. As a result, the configuration space for DBMS tun-
ing is orders of magnitude larger than those of traditional
systems (e.g., file systems). Recent work [8] has found
that with YCSB-A on Cassandra, tuning just five knobs
can achieve 99% of the optimal performance achieved
by tuning many knobs. This approach filters out the "im-
portant" knobs that have the most significant impact on
the performance, thus reducing the configuration search
space and accelerating database tuning. We conduct ex-
periments by varying the number of knobs tuned and re-
port our findings. In Section 4.2 where we present the
canonical results, we tune 27 knobs, and in this section,
we reduce the number of knobs to 9.

Impact on Throughput across Tuning Methods and
Workloads. The performance degradation due to tun-
ing fewer knobs vary across workloads and tuning meth-
ods. For example, for BO and RANDOM on the YCSB-
B workload, we observed improvements in the final
throughput instead of degradation. On the other hand,
for BO on TPC-C, we observe a degradation of ∼20%.
On average, across the three workloads, we observe
a throughput loss of 95.2% on the optimal throughput
achieved by the best tuning method. In general, our
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Figure 5: Optimum throughput achieved tuning 9 knobs
over iterations on three workloads.

findings are in accordance with [8]. However, we note
that although we used the same settings as those in [8],
the performance degradation is inconsistent across work-
loads and tuning methods, and that the amount of degra-
dation is higher than those reported in [8]. We attribute
these discrepancies to the fact that the 9 most impor-
tant knobs we hand-picked were not necessarily the opti-
mal set of knobs that would result in a near-optimal final
throughput.

BO’s Performance Improvements in a Search Space
with a Lower Dimension. The motivation for the
REMBO algorithm aims at efficiently solving Bayesian
optimization problems with high dimensions, in which
the traditional Bayesian optimization techniques have
trouble scaling to. With a fewer number of knobs be-
ing tuned, the configuration search space will have a less
level of dimension, and our assumption is that compared
to tuning a large number of knobs, BO will have perfor-
mance wins over REMBO in a configuration space with
a lower dimension. We speculate that this is because in
the 27-dimensional search space, 100 iterations are not
enough for BO (in which the whole space is searched) to
find a better configuration than REMBO (in which only
a low-dimensional subspace is searched).

Our experiment results in Section 4.2 show that REMBO
achieves a throughput win of (0.97×, 1.42×, 1.14×)
over BO for the three workloads (YCSB-A, YCSB-B,
TPC-C). After reducing the number of knobs from 27
to 9, REMBO’s throughput win drops to (0.97×, 0.95×,
1.23×) over the three workloads. On average, after re-
ducing the number of knobs from 27 to 9, REMBO’s
relative performance win over BO suffers an 11% per-
formance degradation, which matches our conjectures.
However, we note that this general trend might not apply
to all workloads. For example, for the TPC-C workload,
after reducing the number of knobs, BO suffers from a
reduction on the final throughput of around 27% while
REMBO only suffers from minor performance degrada-
tion.

4.4 Different Dimensions of REMBO
The users need to specify the number of dimensions
when employing REMBO. We conduct experiments by
varying the number of REMBO dimensions to explore
how it would affect the tuning performance.
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Figure 6: Optimum throughput achieved over iterations
on three workloads.

REMBO is based on the intuition that only a few "effec-
tive" dimensions would have an impact on the objective
functions. In the DBMS tuning context, we should set
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the number of dimensions to be bigger than important
knobs. From Fig 6, REMBO with 2-dimensional embed-
dings (REMBo-2) gives us the worst throughput and a
relatively large variance since the number of dimensions
cannot include all the important knobs.

For REMBO with 4-dimensional embeddings (REMBO-
4) and 8-dimensional embeddings (REMBO-8), the
performance gap is small. REMBO-4 outperforms
REMBO-8 on YCSB-A and TPC-C, while REMBO-
8 achieves a higher peak throughput on YCSB-B. We
think 4 is a reasonable number to include all effective
dimensions, and REMBO-8 suffers from a larger embed-
ding space so that 100 iterations may not be sufficient.
In this case, we don’t want the number of dimensions
to be smaller than the effective dimensions. A higher-
dimensional space, however, will need more efforts to
explore, although it has a bigger potential to give us bet-
ter configuration.

5 Related Work
Automatic DBMS Configuration Tuning. Tuning
configurations of modern DBMSs automatically is an ac-
tive area in database studies [6, 10].

Database researcher employed rule-based and heuristic
methods for configuration tuning to achieve high per-
formance for particular DBMSs or some certain knobs.
BestConfig [23] exploits limited resources to automati-
cally find the optimal setting for a given workload.

Recently, machine learning methods have emerged as an
effective approach for configuration tuning [11]. Otter-
tune [19] is the state-of-the-art configuration tuning sys-
tem which leverages Bayesian Optimization and Gaus-
sian Process to recommend knob configurations. CDB-
Tune [22] aims at cloud databases and employs deep de-
terministic policy gradient (DDPG) [13] to find the opti-
mal setting in high-dimensional configuration space.

Online Tuning Algorithms. Bayesian Optimization is
a popular approach for many system configuration tuning
problems [17]. It can explore the state space efficiently
while the evaluation of the target function is expensive.
RelM [9] firstly employs Bayesian Optimization to au-
tomatically tune the memory allocation for data analytic
systems. iTuned [7] automates parameter tuning by find-
ing high-impact parameters and high-performance pa-
rameter settings using. Ottertune [19] also uses Gaus-
sian Process to fit the surrogate model. Alabed et al. [2]
employs Bayesian optimization to find parameters that
maximize RocksDB’s I/O throughput.

Reinforcement learning is another type of approach that

is leveraged in database tuning. CDBTune [22] takes use
of DDPG for cloud database tuning. QTune [12] em-
ploys DS-DDPG for query-aware tuning.

6 Future work
Future directions of this project include the following:

• Dive Deeper into our Existing Experiment Re-
sult. For example, in Section 4.3, we notice that
although we emulated the experiment setup in [8],
we are seeing discrepancies in our results such as
the degree of throughput loss and the generalization
characteristic across workloads. We plan to investi-
gate further on these findings and try to reason about
these differences.

• Combining REMBO and BO for the Best of Both
Worlds. In Section 4.2, we note that while REMBO
has the fastest convergence rate, it does so by only
optimizing upon a restricted subspace, making the
values of each knob more concentrated. On the
other hand, BO explores upon the whole configura-
tion space. It would be interesting to try to combine
REMBO and BO to leverage the fast convergence
rate and the chance to search over the whole config-
uration space for the best of both worlds.

• Evaluate Other HDBO Methods. Aside from
REMBO, there are a number of other approaches on
high-dimensional BO (HDBO). For example, to uti-
lize low-dimensional structures, Hashing-enhanced
Subspace BO (HeSBO) [14] relies on hashing and
sketching to reduce surrogate modeling and acqui-
sition function optimization to a low-dimensional
space. Evaluating these other methods comprehen-
sively would provide more insights on database tun-
ing.

7 Contributions Breakdown
Cong worked on running experiments on CloudLab, col-
lecting results, and plotting the figures. For the writeup
of the final report, all four of us worked on it together
(Rui mainly worked on Section 4.3 & 6, Cong mainly
worked on Section 4.2 & 4.4, Ziyi mainly worked on ex-
panding Section 1 & 2.2, and Gagan mainly worked on
Section 2.1 & discussion of Section 4).
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