
EchelonFlow Case Studies and Proofs

This report provides supplementary proofs for the EchelonFlow workshop paper [1].

1. ECHELONFLOW AND ITS TARDINESS

Definition 1 (EchelonFlow). An EchelonFlow is a set of flows whose ideal finish times are related, where
the relation is represented by an arrangement function of the reference time.

Let H = { f0, f1, ..., f|H|−1} be an EchelonFlow with reference time r, where |H| is the cardinality
(i.e., the number of flows) in H, and the flows follow the ascending order of the start time. The
set D = {d0, d1, ..., d|H|−1} contains the ideal finish time dj of each flow f j ∈ H, and s0 is the start
time of f0. Then d0 = r = s0, and we have an arrangement function g(D, r).

Definition 2 (Flow Tardiness). The tardiness of a flow is its actual finish time exceeding its ideal finish
time.

Let d be the ideal finish time of a flow f and e be the flow’s actual finish time, the tardiness t f
of f is:

t f = e − d (S1)

We define tardiness to differentiate from most flow scheduling work that minimizes flow
completion time. Tardiness regulates flows regarding their ideal finish times, rather than their
flow start times. This definition allows computation units to realign with the arrangement per
EchelonFlow.

Definition 3 (EchelonFlow Tardiness). The tardiness of an EchelonFlow is the maximum tardiness of
all its flows.

For EchelonFlow H, following the above notations, let ej be the actual finish time of flow f j,
corresponding to the ideal finish time dj. The tardiness tH of H is:

tH = max(ej − dj), 0 ≤ j < |H| (S2)

The tardiness of all the flows in an EchelonFlow should remain the same if the EchelonFlow
constantly maintains the computation arrangement. The definition of maximum tardiness helps
to reduce the difference in tardiness among individual flows.

Optimization Objective
Naturally, based on our earlier definitions, the optimization objective of EchelonFlow schedul-

ing is tardiness minimization. For an individual EchelonFlow H, particularly, the objective is to
minimize its tardiness tH :

Minimize: z = tH (S3)

For multiple EchelonFlows, the objective is to minimize the sum of their tardiness. For a set
EchelonFlows H = {H0, H1, ..., H|H|−1}, where |H| is the cardinality and tHi is the tardiness of
EchelonFlow Hi ∈ H, the objective is:

Minimize: ẑ = ∑
0≤i<|H|

tHi (S4)

The objective can be easily adjusted to the weighted sum of individual EchelonFlows’ tardiness,
should there be a proper way to assign weights to different DDLT jobs.

2. CASE STUDIES

Case I: Coflow
Coflow is a special EchelonFlow whose flows share the same ideal finish time. For a Coflow in

the form of an EchelonFlow H, the ideal finish time dj of the jth flow f j (from |H| flows in total)
should follow the arrangement function below, where r is the reference time, i.e., the start time of
the head flow.

dj = r, 0 ≤ j < |H| (S5)

We prove that minimizing the tardiness of EchelonFlow H equals to minimizing the Coflow
completion time.

Proof. The real finish time of the jth flow f j is ej. z is H’s tardiness.

Minimize z = max(ej − dj)

= max(ej − r)

= max(ej) − r

=> z = max(ej)

(S6)

The Coflow completion time is decided by the last-finish flow. ẑ is H’s completion time.

Minimize ẑ = max(ej) (S7)

Eqn. S6 and Eqn. S7 are the same.

Case II: Pipeline Parallelism (PP)

1

Forward p2p transfer of activationsTime

2 3

1 2 3

1 2 3

Worker 1

Worker 2

EchelonFlow 1

1 2 3

1 2 3Worker 3

EchelonFlow 2

e1 e2 e3

e4 e5 e6

Comp time: T1

…

Comp time: T2

Fig. 1. EchelonFlow model for Pipeline

In Fig. 1 we have three workers and two EchelonFlows, H1 and H2. Ti represents the computa-
tion time of a mini batch on the ith worker.

r1 is the head flow start time in H1. For H1, we have:

dj =

 r1, j = 0

dj−1 + T2, 1 ⩽ j < |H1|
(S8)

r2 is the head flow start time in H2. For H2, we have:

dj =

 r2, j = 0

dj−1 + T3, 1 ⩽ j < |H2|
(S9)

We prove that minimizing the tardiness of EchelonFlow H1 equals to minimizing the task
completion time.

Proof. Take Fig. 1 as an example. For simplicity, we only prove the case with three mini
batches. But the proof holds for any number of mini batches.

Let △tj = ej − dj , 0 ⩽ j < |H1|. Minimizing H1’s tardiness z1:

Minimize: z1 = max(△t1,△t2,△t3) (S10)

2

The completion time ẑ could be expressed as:

Minimize: ẑ = max(max(e1 + T2, e2) + T2, e3) + T2

= max(max(△t1 + d1 + T2,△t2 + d2) + T2, e3) + T2

= max(max(△t1 + d2,△t2 + d2) + T2, e3) + T2

= max(max(△t1,△t2) + d2 + T2, e3) + T2

= max(max(△t1,△t2) + d3,△t3 + d3) + T2

= max(max(△t1,△t2),△t3) + d3 + T2

= max(△t1,△t2,△t3) + d3 + T2

=> ẑ = max(△t1,△t2,△t3)

(S11)

Eqn. S10 and Eqn. S11 are the same.

Case III: Fully-Sharded Data Parallelism (FSDP)

AG1

F1

AG2

F2

AG3

F3

AG’
3

B3

RS3

AG’
2

B2

RS2

AG’
1

B1

RS1

Forward Backward AllGather ReduceScatter

EchelonFlow 1

Time

EchelonFlow 2

e1 e2 e3 e4 e5 e6

e7 e8 e9

Fig. 2. EchelonFlow model for FSDP

ZeRO/FSDP [2, 3] (Fig. 2) uses the all-gather collective primitive to gather weights from all
nodes before each layer’s forward and backward computations. Flows in each all-gather collec-
tive form a Coflow. These Coflows along the computation timeline further form an EchelonFlow,
following a pipeline-like pattern as in GPipe (Fig. 1). Every AG or RS is a Coflow, which is also a
special EchelonFlow. Furthermore, all AGs form a bigger EchelonFlow H1, and all RSes form a
bigger EchelonFlow H2. We can use the same method in Case II to prove that minimizing the
tardiness of EchelonFlow H1 and H2 equals to minimizing the task completion time.

The arrangement function of EchelonFlow H1 is similar to Eq. S8 and Eq. S9.

dci =


rc0 , i = 0

dci−1 + Tf wd , 1 ⩽ i ⩽ n − 1

dci−1 + Tbwd , n ⩽ i ⩽ 2n − 1

(S12)

For an n-layer neural network, let Ci be the ith Coflow, then C0 − Cn−1 and Cn − C2n−1 belong
to the forward and backward phase, respectively. The reference time rc0 is the reference time of
the first Coflow C0, which is the start time of its first flow. Since all flows in a Coflow share the
same ideal finish time, the (single) ideal finish time of each Coflow dci is time Tf wd or Tbwd later
than the previous Coflow dci−1 depending on whether it lies in the forward or backward phase.
Tf wd and Tbwd can both be profiled.

3. PROPERTIES

Here we list important properties of EchelonFlow.

Property 1: EchelonFlow scheduling minimizes completion times of popular DDLT paradigms.
Tardiness minimization aims to advance computation units while maintaining the desirable

computation arrangement, which ultimately speeds up training. We prove it case-by-case for the
popular DDLT paradigms in §2.

Property 2: EchelonFlow is a superset of Coflow.

3

Coflow can be presented as a special EchelonFlow where all the flows share a common ideal
finish time. In this case, by definition, the tardiness of every flow is its finish time minus the
start time of the first flow. Our EchelonFlow optimization objective of minimizing the maximum
tardiness among all the flows (Eq. S3) becomes minimizing Coflow completion time. This is
proved in Case I of §2.

Property 3: EchelonFlow scheduling is NP-hard.
Coflow scheduling is NP-hard [4], so the superset problem EchelonFlow scheduling is also

NP-hard.

Property 4: Coflow scheduling algorithms can be adapted to EchelonFlow scheduling at the same complex-
ity.

There exists a one-to-one mapping between EchelonFlow and Coflow metrics. By the flow
tardiness definition in Eq. S1, the finish time of each flow could be calculated as:

e = t f + d (S13)

For each EchelonFlow H = { f0, f1, ..., f|H|−1}, according to its arrangement function D =
{d0, d1, ..., d|H|−1}, the flow completion time could be presented as F = { f0 + d0, f1 + d1, ..., f|H|−1 +
d|H|−1}. By substituting the flow completion time with the tardiness metric, we change the opti-
mization goal from minimizing the flow completion time to minimizing the flow tardiness. In this
sense, we can adapt Coflow scheduling algorithms to EchelonFlow scheduling, with a different
metric for evaluating flows. In MADD [4], for example, in intra-EchelonFlow scheduling, we
estimate the latest flow that has the largest tardiness, rather than the longest flow completion time
as for Coflow; in inter-EchelonFlow scheduling, we rank EchelonFlows by each EchelonFlow’s
tardiness (Eq. S4), instead of the Coflow completion time. This mapping does not change the
algorithm complexity.

REFERENCES

1. R. Pan, Y. Lei, J. Li, Z. Xie, B. Yuan, and Y. Xia, “Efficient flow scheduling in distributed
deep learning training with echelon formation,” in The 21st ACM Workshop on Hot Topics in
Networks (HotNets ’22), November 14– 15, 2022, Austin, TX, USA, (2022).

2. Facebook, “Fairscale,” in https:// github.com/ facebookresearch/ fairscale, (2022).
3. S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory optimizations toward

training trillion parameter models,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, (IEEE, 2020), pp. 1–16.

4. M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with varys,” in Proceed-
ings of the 2014 ACM conference on SIGCOMM, (2014), pp. 443–454.

4

https://github.com/facebookresearch/fairscale

	EchelonFlow and its Tardiness
	Case Studies
	Properties

