CAUTIOUSLY AGGRESSIVE GPU SPACE SHARING FOR IMPROVING
RESOURCE UTILIZATION AND JOB EFFICIENCY

Rui Pan!

ABSTRACT

Modern GPU architectures exhibit high versatility and specialization by including a myriad combination of cores
(e.g., FP16, FP32, FP64) designed for different workloads. In current scheduling frameworks for large-scale
multi-tenant GPU clusters, the scheduling/resource allocation model is leaving a large number of cores idle
and not properly utilized. In this project, we first present a new insight into GPU utilization that takes into
consideration the different types of cores utilized. Then, we improve the overall cluster utilization by breaking the
current scheduling model and using aggressive space sharing of GPUs to pack multiple jobs on the same GPU
concurrently with control over the resource partition fraction. Microbenchmarks show that for traces of common
workloads, we are able to decrease the makespan by up to 30% and the average job completion time (JCT) by up
to 24% compared to state-of-the-art (SOTA) GPU space sharing primitives.

1 INTRODUCTION

Recent years have seen an increase in high performance
computing (HPC) and deep learning training (DLT) work-
loads. These workloads include both traditional HPC appli-
cations, like computational chemistry, financial risk mod-
eling, and computer-aided engineering, as well as emerg-
ing applications, like machine learning, and deep learning,
which widely cover tasks like image and voice recognition,
language modeling and translation, recommendation sys-
tems, etc.

The foundation of the increasing popularity of these
compute-intensive workloads is the emergence of special-
ized, domain-specific hardware accelerators, such as GPUs,
TPUs (Jouppi et al., 2017), and FPGAs. Specifically, GPUs
are designed to allow the faster computation of certain work-
loads by embracing specialized optimizations. These hard-
ware accelerators are powerful yet expensive: A GPU virtual
machine (VM) costs around 10x more than that of a reg-
ular VM. With different groups in the same organization
running compute-intensive workloads, it is beneficial to
consolidate GPU resources into a GPU cluster shared by
multiple tenants. As a result of the high cost and the need
for fair and efficient scheduling and resource allocation, it
is crucial for cluster scheduling frameworks to ensure the
proper utilization of hardware accelerators in the cluster.

'Department of Computer Science, University of Wisconsin-
Madison, Madison, W1, United States. Correspondence to: Rui
Pan <rpan33@wisc.edu>.

One issue with fully utilizing GPU clusters is that the cur-
rent model for estimating the utilization of GPUs is not
precise enough: current GPU utilization monitoring tools
do not provide a fine-grained estimation of the utilization
of computing cores in a GPU. Modern GPU architectures
exhibit high versatility by including a myriad combination
of cores (FP16, FP32, FP64, etc.) designed for different
workloads. However, almost all GPU utilization monitoring
tools are wrapped around the NVIDIA System Management
Interface (nvidia-smi) (nvi, 2021), which is developed on
top of the NVIDIA Management Library (NVML) (nvm,
2021). The GPU utilization metric provided by NVML is
a very coarse, upper-bound estimation of the utilization: it
is defined as the “percent of the time over the past sample
period during which one or more kernels was executing on
the GPU”. As a result, at a certain point in time, as long as
one kernel is being executed on the GPU, NVML considers
the GPU to be fully utilized, while a lot of the cores may
be sitting idle and are not being properly utilized. Some
of the most recent works (Wang et al., 2021) report similar
findings, in which occupancy rate replaces volatile GPU
utility as the metric for monitoring utilization.

To tackle this issue, we break the traditional resource allo-
cation model in shared clusters and use aggressive space
sharing of GPUs to pack/co-locate multiple jobs on the
same GPU concurrently. Traditionally, GPUs are consid-
ered as bulky hardware that is not easily virtualizable and
shared. In recent years, however, the improvements in both
GPU architectures and software support are slowly breaking
apart this notion. With the NVIDIA Multi-Process Service
(MPS), the sharing of a single GPU context by multiple

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

Task Model Dataset NVML Util | FP16 Util FP32Util FP64 Util

Image Classification ResNet-18 CIFARI10 76.8% 0% 40.26% 0%
Image Classification ~ ResNet-18 Q CIFARI10 47.5% 30.05% 32.36% 0.38%
Image Classification ResNet-50 ImageNet 96.4% 0% 52.02% 0.02%
Language Modeling LSTM Wikitext-2 73.5% 0% 33.04% 0%
Language Modeling LSTM Q Wikitext-2 62.9% 11.34% 11.44% 0%

Recommendation Recoder ML-20M 12.2% 0% 24.97% 0%
cuBLAS DGEMM N/A Synthetic matrices 84.72% 0% 0% 59.78%

Table 1. Common DL/HPC workloads used in the evaluation. The ”Q” indicates quantization/mixed precision training (Micikevicius
et al., 2018). In this project, we use NVIDIA Apex (NVIDIA, 2018) and PyTorch AMP (PyTorch, 2019) for quantization. "NVML Util”
indicates the GPU utilization as reported by NVML averaged over time. “FP Util” indicates the core utilization as measured by the profiler

wrapper we developed.

CUDA processes, “space sharing (SS)”, is better supported,
particularly in post-Volta architectures.

Some of the most cutting-edge scheduling frameworks and
policies already take into consideration the space sharing
of multiple jobs on the same GPU. However, they have
some shortcomings that result in the sub-optimal resource
utilization of GPUs and efficiencies of jobs. In this project,
we present techniques such as fine-grained fractional space
sharing and aggressive multi-job space sharing to address
these problems.

As an overview, this report:

* Provides a better understanding of GPU utilization
that takes into consideration the utilization of different
types of cores, rather than the current, coarse estima-
tion provided by GPU monitoring tools (§3)

* Presents a profiler that is built around NVIDIA Visual
Profiler which reports the utilization of different types
of cores of workloads (§3)

* Presents a Python interface for interacting with
NVIDIA Multi-Process Service (MPS) (mps, 2020)
that is uploaded to the Python Package Index for pub-
lic use (§3)

* Reports a fine-grained profiling of how different GPU
cores get utilized in common DL/HPC workloads

(84.1)

* Reports microbenchmarks that show how cautiously
aggressive space sharing (using fine-grained fractional
SS & aggressive multi-job SS) improves the resource
utilization of a GPU and the avg JCT & makespan of a
trace of jobs (§4.2 - 4.4)

The results in this report can be reproduced by following
the instructions in the Appendix.

2 BACKGROUND

In this section, we provide a brief overview of common
DL/HPC workloads (§2.1), popular GPU profiling and mon-
itoring tools (§2.2), and existing GPU space sharing primi-
tives (§2.3).

2.1 Common Deep Learning and High Performance
Computing Workloads

In this section, we give a brief overview of the common
DL/HPC workloads and their characteristics.

Deep learning and deep neural networks (DNNs) are rev-
olutionizing all subject areas. We excerpt a trace of com-
mon DNN workloads from Gavel (Narayanan et al., 2020),
where ResNet-18 and ResNet-50 (He et al., 2016) are used
for image classification workloads, LSTM (Hochreiter &
Schmidhuber, 1997) is used for language modeling work-
loads, and Recoder/Autoencoder (Moussawi, 2018) is used
for Recommendation workloads. The standard precision
for DNN workloads has long been single precision (FP32).
In recent years, there has been a trend to use mixed pre-
cision training (quantization) (Micikevicius et al., 2018)
which replaces some CUDA kernels that run on FP32 cores
with kernels that utilize FP16 (half precision) tensor cores.
Mixed-precision training brings a significant speedup to the
training time without any adversarial effects on accuracy,
and it also reduces the memory consumption of a DNN
training job.

In high performance computing and scientific computations
with rather strong precision requirements, except from FP16
and FP32, the double-precision (FP64) format is also used,
as low precision floating formats are not precise enough
and lead to accumulation of errors. In this project, we use
the cuBLAS (cub, 2013) DGEMM function to emulate a
HPC workload, where we apply the function on synthetic
512*512 matrices.

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

Running two jobs that utilizes different
types of cores sequentially

Packing two jobs that utilizes
different types of cores

The effects of different schemes on running
two jobs that both under-utilize FP32 cores

—— FP32 Util
— FPB4 Util

Job 1 starts

Job O starts

Core Utilization (%)
Core Utilization (%)

Makespan: 90s

Job 0 and 1 start at the same time

— FP32 Uil 100
— FPB4 Util %0

< Makespan: 54s

A I P e N PN f e i,
2
Makespan: 71s

Makespan: 53s Makespan: 82s

FP32 Core Utilization (%)

—— Space Sharing w/ MPS
10 { — Space Sharing
0| — FFO

Job 0 finishes, job 1 starts

[} 10 20 30 40 50 60 0 80 S0 [} 10 20 30 40
Time (s)

50 60 0 80 S0 [} 10 20 30 40 50 60 70 80
Time (s)

Time (s)

Figure 1. Visual illustration of the benefits of space sharing. Left & Middle: Running two jobs that utilize different types of cores using
FIFO (left) and Space Sharing w/ MPS (middle). Right: Running two jobs that both under-utilize FP32 cores using different schemes.

A list of DL/HPC workloads this project uses for evaluations
can be found in Table 1.

2.2 GPU Profiling and Monitoring Tools

NVIDIA Management Library (NVML): NVML (nvm,
2021) is a C-based API for monitoring and managing vari-
ous states of the NVIDIA GPU devices. It provides a direct
access to the queries and commands exposed via nvidia-smi.
One of the most used metric that is query-able by NVML is
GPU utilization (Volatile-GPU-Util). NVML defines GPU
utilization to be the “percent of time over the past sample
period during which one or more kernels was executing
on the GPU”, making this a coarse-grained, upper-bound
estimation of the utilization of different types of cores in the
whole GPU.

NVIDIA System Management Interface (nvidia-smi):
nvidia-smi (nvi, 2021) is a command line utility, based on
top of NVML, intended to aid in the management and mon-
itoring of NVIDIA GPU devices. This utility allows the
querying of GPU device state.

NVIDIA Visual Profiler (nvprof & nvvp): The NVIDIA
Visual Profiler (nvp, 2012) is a cross-platform performance
profiling tool that delivers developers vital feedback for
optimizing CUDA C/C++ applications. nvprof operates in
one of the four modes: summary mode, GPU-Trace and API-
Trace modes, event/metric summary mode, event/metric
trace mode.

NVIDIA NSight Compute + Nsight Systems: The
NVIDIA Volta platform is the last architecture on which the
NVIDIA Visual Profiler tools are fully supported. Nsight
Systems (NVIDIA, b) is now used for GPU and CPU sam-
pling and tracing to provide comprehensive system-wide,
workload-level application performance, and Nsight Com-
pute (NVIDIA, a) is used for GPU kernel profiling by pro-
viding detailed performance metrics analysis and debugging
on GPU CUDA kernels.

2.3 Existing GPU Space Sharing Primitives

Gandiva: The space sharing policy in Gandiva (Xiao et al.,
2018) uses profiling to approximate the resource usage
(GPU utilization, GRAM usage & job progress rate) be-
fore greedily packing jobs with the lowest GPU utilizations
on a GPU with the lowest utilization. If the two jobs packed
adversely impact each other (indicated by the total through-
put of packed jobs being lower than that of time slicing),
Gandiva retracts the packing decision and attempts to use
the GPU with the next lowest utilization. Gandiva uses this
simple heuristic because analytically modeling performance
of packing is challenging given the heterogeneity of DLT
jobs, and the inter-job interference may come from various
sources like caches and memory bandwidth, etc. Gandiva
does not provide an open-sourced implementation, but its
scheduling policies are emulated in Gavel as optimization
problems.

Salus: Salus (Yu & Chowdhury, 2020) presents two GPU
sharing primitives for fine-grained GPU sharing among mul-
tiple DL applications: fast job switching (for time-sharing
and preemption) and GPU lane abstraction (for dynamic
memory sharing). The GPU lane abstraction divides the
GPU memory space into continuous memory spaces (lanes),
which allows for time-slicing within lanes and parallelism
across lanes. Salus also supports automatic in-lane defrag-
mentation and dynamic lane assignment (re-partitioning).

Gavel: Gavel (Narayanan et al., 2020) takes into considera-
tion the heterogeneous performance of DLT jobs on differ-
ent hardware accelerators because of the difference in the
model architectures. Gavel expresses scheduling policies
as optimization problems and produces allocations as time
fractions. On top of time sharing in the form of time fraction
matrices, Gavel’s policies can incorporate space sharing to
consider job combinations of at most two jobs.

Wavelet: Wavelet (Wang et al., 2021) attempts to fully
utilize all the available on-device memory of GPUs involved
in the same distributed training job by adopting Tick-Tock
scheduling, which interleaves waves of peak memory usage

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

Sharing Scheme ‘ Job 1 Run Time Job2 Run Time | Job 1JCT Job2JCT | AvgJCT Makespan
FIFO 316 144 316 460 388 460
Space Sharing w/o MPS 405 202 405 202 303.5 405
Space Sharing (100-100) 345 360 345 360 352.5 360
Space Sharing (90-10) 344 263 344 263 298.5 344

Table 2. Different Sharing Schemes. Job 1: ResNet50, ImageNet, no quantization, bs=64, 1 epoch. Job 2: SqueezeNet1_0, SVHN, no

quantization, bs=32, 4 epochs. All time units are in seconds.

among the accelerators.

3 IMPLEMENTATION

We want to improve the memory and compute utilization of
GPUs in a cluster by aggressively packing multiple work-
loads that utilize different types of cores on the same GPU
concurrently. We use the NVIDIA Multi-Process Service
(MPS) (mps, 2020) to improve the GPU utilization and
speed up training jobs. MPS is a feature that allows multi-
ple CUDA processes to share a single GPU context. Each
process receives some subset of the available connections to
that GPU. MPS allows overlapping of kernel and memcopy
operations from different processes on the GPU to achieve
maximum utilization. (Sah, 2015)

To get a deeper insight into the utilization of different on-
chip compute cores, we use the NVIDIA Visual Profiler
(nvprof) to profile common DL & HPC workloads (Table
1). We present a profiler output parser that is built around
nvprof which computes the utilization of different types of
cores in a workload. First, for each CUDA kernel in a work-
load, we use the nvprof metric collection mode to query the
metrics that indicate the fine-grained utilization of different
types of compute cores: “Tensor-Precision Function Unit
Utilization” for FP16 usage, “Single-Precision Function
Unit Utilization* for FP32 usage, and “Double-Precision
Function Unit Utilization” for FP64 usage. Then, we use
the nvprof summary mode to obtain the time fraction each
CUDA kernel takes during the span of the whole workload.
Finally, we merge the output from the two modes to produce
a utilization percentage for different compute cores by tak-
ing the time-weighted average of utilizations of all CUDA
kernels. We discuss our results in the evaluation section.

Furthermore, when we space-share multiple jobs concur-
rently, we find that the vanilla API provided by NVIDIA
MPS does not allow for flexible adjustment of MPS thread
percentages associated with each server. Thus, we also
present a Python package, pymps, that allows for easier
interactions with the MPS interface from Python. When a
scheduling framework dispatch jobs, it may use the pymps
utility to control the fraction of the resources (in the form of
active thread percentages) the next job will get.

Scheme JoblJCT Job2JCT AvgJCT Makespan
FIFO 458.9 432.4 675.1 891.3
SS w/o MPS 870.8 487.3 679.1 870.8
SS (100-100) 596.8 586.7 591.8 596.8

Table 3. Packing workloads that use different types of cores. Job 1:
cuBLAS DGEMM, matrix height/width=512, repeat for 500000
times. Job 2: ResNet18 on CIFARI10, bs=16, 1 epoch. All time
units are in seconds.

Using the aforementioned software, we provide microbench-
marks that showcase the effectiveness of space sharing.

4 EVALUATIONS

In this section, we seek to answer the following questions:
(§4.1) What is the discrepancy between the utilization re-
ported by NVML and the core-specific utilization reported
by nvprof for common DL/HPC workloads? (§4.2) What is
the performance comparison between traditional scheduling
policies, vanilla space sharing, and space sharing with MPS?
(§4.3) How does fractional resource allocation on a single
GPU help further improve the performance? (§4.4) What
is the performance impact of packing 2+ jobs on the same
GPU?

Experiment Setup: All experiments are done on an
NVIDIA Tesla V100 GPU (v10, 2017). A full V100 GPU
has 84 SMs, 5376 FP32 cores, 5376 INT32 cores, 2688
FP64 cores, 672 Tensor Cores (for mixed-precision comput-
ing), and 336 texture units. The V100 GPU is powered by
the Volta architecture and thus has access to the Volta MPS
capabilities.

4.1 Utilizations of Common DL/HPC Workloads

In this section, using the fine-grained utilization profiler we
developed on top of NVIDIA Visual Profiler, we provide a
brief overview of the utilization characteristics of different
types of cores in common DL/HPC workloads.

From Table 1, we confirm our conjecture that NVML pro-
vides an inaccurate estimation of the actual utilizations with

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

Slowdown factor comparison of ResNet-18 +
CIFAR-10 using different batch sizes

Slowdown factor comparison of ResNet-50 +
ImageNet using different batch sizes

Slowdown factor comparison of Recommendation +
ML-20M using different batch sizes

30 —&— bs=16, NWML util=76.8%
—&— bs=32, NVML util=87 6% 3
—d— bs=256, NVML util=98 8% 30

Slowdown factor
Slowdown factor

—&— bs=16, NWML util=96% 125

—&— bs=32, NVML util=96 4%

—— bs=64, NVML util=98 8%
+— bs=128, NVML util=99.2%

—#— bs=512, NVML util=12.3%
—a&— bs=1024, NVML util=8 9%
—i— bs=2048, NVML util=12 2%
#— bs=4096, NVML util=10.9%
—#— bs=8192, NWVML util=15.3%

100

Slewdown factor

0 3 4 S0 60 70 B0 S0 100 I)
MPS thread percentage (%)

MPS thread percentage (%)

60 70 B0 %0 100 20 30 40 50 60 70 B0 %0 100

MPS thread percentage (%)

Figure 2. Slowdown factor comparison of different workloads. Generally, the less resource-demanding a workload is, the less resources it
should be given by the scheduler to maximize the overall throughput of all jobs co-located on the same accelerator.

| # Jobs Packed | Makespan/Avg JCT | Makespan Running Sequentially

Avg JCT Running Sequentially | Total Throughput |

1 53 53
2 60 106
3 71 159
4 96 212
7 150 371

53 943
79.5 1667
106 1948
132.5 2083
212 2333

Table 4. The benefits of packing 2+ jobs concurrently. When packing N jobs concurrently, all of them start and end at roughly the same
time, so they have the same makespan and avg JCT. All time units are in seconds. The unit for total throughput is img/s.

two findings: (1) The NVML Util is an upper-bound, coarse-
grained estimation of the actual core utilizations. (2) For
most tasks, only 1-2 types of cores are being utilized while
others are idling. This indicates that there is potentially
plentiful resources being wasted as a result of the traditional
exclusive-access model of cluster scheduling policies.

4.2 Space Sharing vs. Traditional Scheduling Policies

In this section, we consider the simplest case of space-
sharing two jobs on one GPU. We explore different GPU
sharing options and comprehensively compare different met-
rics of these sharing outputs.

We demonstrate the effectiveness of MPS through two ex-
periments. In experiment 1 (Figure 1 left & middle), we
pack workloads that use different types of cores. Job 1 im-
itates common HPC workloads by performing a cuBLAS
DGEMM operation which mostly uses FP64 cores, while
job 2 trains ResNet-18 on CIFAR10 using mostly FP32
cores. From Table 1, we can observe that these two work-
loads have utilizations of 76.8% and 84.72% as reported by
NVML. Traditionally, a cluster scheduler would conclude
that these two jobs both have high utilizations so it will not
devise to space-share these workloads. However, by using
the fine-grained profiler we developed on top of nvprof, we
notice that both workloads have relatively low utilization
on the task-specific cores they use. As a result, we present
microbenchmarks (Table 3) that indicate the effectiveness of
physical sharing. The traditional, exclusive-access schedul-
ing policy will run the two workloads one at a time. If we

start the jobs concurrently without enabling MPS, we get
a negligible gain in the overall makespan. However, with
MPS enabled, we get a 33% decrease in the makespan and
a 12.3% decrease in the average JCT. In experiment 2 (Fig-
ure 1 right), we space-share two jobs (training ResNet-18
on CIFARI10) that both under-utilize the same type of core
(FP32), and we observe similar findings in a higher core
utilization and decreased makespan & avg JCT.

4.3 Fractional Resource Allocation Weight Tuning

In the previous section, we showed that using MPS to aid the
space sharing of concurrent jobs improves both the utiliza-
tion and the makespan. In this section, we empirically show
that the aforementioned metrics can be further improved by
tuning the fraction of resources each job being packed gets
using the set of APIs provided by MPS.

In time sharing, the portion of time each job gets allocated is
usually a decision made by the scheduler after acknowledg-
ing the jobs’ resource requirements. This kind of fractional
time sharing allows for the flexible control of the resource al-
location fraction between jobs. In space sharing, the weight
control can be emulated by the MPS active thread percent-
age control utility. The MPS control utility provides 2 sets
of commands to set/query the limit of all future MPS clients.
The limit can be constrained for new clients by setting the
active thread percentage for a client process. By default, the
active thread percentage for all processes is 100%. Together,
these APIs allow for the maximum degree of scheduling
freedom.

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

In Table 2, we show that with further fine-tuning of the
fractional weights each job gets, we can reduce the average
JCT of job 1 and job 2 by 15% without severely sacrificing
the run time of job 1. We also observe a 5% decrease in the
overall makespan.

In Figure 2, we present a scaling analysis on the impact of
different MPS thread percentages on the slowdown factor
of the throughputs for different workloads. For the same
(model, dataset) configuration, a larger batch size allows
the training job to better utilize the support for parallelism
provided by the GPU, thus resulting in a higher resource
utilization. We can observe that a job with a low resource uti-
lization has a negligible slowdown in the throughput when
it gets a smaller MPS thread percentage. Intuitively, this is
because this job does not fully utilize the GPU by nature,
so it will not suffer from a reduced throughput after being
given a less fraction of resources. In contrast, the throughput
of a job with high resource demand gets linearly reduced
as we decrease the MPS thread percentage it is allocated.
This finding suggests that when deciding the optimal frac-
tional allocation, the scheduler can profile the jobs to see
their utilization and assign fewer resources to low resource
demanding jobs to increase the net throughput of all jobs
being packed.

4.4 Aggressive Multi-Job Space Sharing

Traditionally, in both Gandiva (Xiao et al., 2018) and Gavel
(Narayanan et al., 2020), when space sharing is considered,
only combinations of at most two jobs will be considered, as
the authors found empirically that packing a larger number
of jobs concurrently rarely increases the net throughput.
However, we observe that packing 2+ jobs can result in a
higher net throughput and a lower avg JCT/makespan if we
carefully pick the jobs and partition the resources according
to demand. We present microbenchmarks that support our
finding.

In this experiment (Table 4), for simplicity, we choose a
single type of job (training ResNet-18 on CIFAR-10) to eval-
uate the effectiveness of aggressive multi-job space sharing.
When packing N jobs, we set the MPS thread percentage
each job gets to be (100/N)% for fairness/load balancing.
Within the limit allowed by the available on-device memory,
we are able to pack a maximum of seven jobs and observe
an increase of up to 40% in the net throughput after relax-
ing the number limit of jobs packed. Furthermore, when
packing seven jobs, we observe a reduction of 147% for the
makespan and 41% for the avg JCT compared to running
sequentially, and a reduction of 30% for the makespan com-
pared to SOTA space sharing primitives where at most two
jobs are packed. However, as we increase the number of jobs
packed, we notice a slowdown in the run time of individual
jobs and a sub-linear increase in the total throughput of all

jobs due to resource contention and inter-job interference
becoming more severe. We conclude that for jobs with low
resource demands, we can relax the constraint of only pack-
ing two jobs and pack 2+ jobs aggressively to increase the
GPU utilization and net throughput, particularly for schedul-
ing objectives that aim to maximize the net throughput or
minimize the makespan.

5 FUTURE DIRECTIONS

Future directions of this project include the following:

» Developing an online job profiler that has a short pro-
filing overhead but gives accurate estimations of the
resource utilization of a job, and integrating the pro-
filer into scheduling frameworks like Gavel to aid the
scheduling policies in making the optimal allocations.

L]

Developing a policy/algorithm that outputs the optimal
fractional allocation of MPS thread percentages given
a set of jobs space-sharing the same GPU. The opti-
mal fraction should optimize a specified objective, e.g.
minimizing makespan.

Using different metrics to monitor and evaluate the
compute core usage to provide a more comprehensive
study of DL/HPC workloads. For example, occupancy
rate (occ, 2015) for each CUDA kernel was used by
Wavelet (Wang et al., 2021).

e NVIDIA Multi-Instance GPU (MIG) (mig, 2020) is a
virtualization technique that supports latest NVIDIA
GPUs. It can partition an A100 GPU into as many as
seven instances, each fully isolated with their own high-
bandwidth memory, cache, and compute cores. Instead
of using the MPS thread percentage for coarse-grained
resource partition, we can use MIG for fine-grained,
precise resource partition of jobs sharing the same
physical GPU.

6 CONCLUSIONS

In this report, we explored the effectiveness of space sharing
compared with those of traditional scheduling policies. We
present two techniques, namely fractional resource partition
and aggressive multi-job colocation, to further increase the
benefits of space sharing. We conclude that with the proper
profiling of jobs, scheduling policies can make aggressive
yet cautious space sharing decisions to improve both the
cluster utilization and efficiency in a multi-tenant cluster.
Our findings further suggest that GPU cluster scheduling
policies should be aware of the resource demands of jobs to
apply proper optimizations.

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

REFERENCES

Nvidia visual profiler, October 2012.
https://developer.nvidia.com/
nvidia-visual-profiler.

URL

cuBLAS, July 2013. URL https://developer.
nvidia.com/cublas.

Achieved occupancy, 2015. URL https:
//docs.nvidia.com/gameworks/content/
developertools/desktop/analysis/
report/cudaexperiments/kernellevel/
achievedoccupancy.htm.

NVIDIA Tesla V100 GPU Architecture, August
2017. URL https://images.nvidia.
com/content/volta-architecture/pdf/
volta—architecture-whitepaper.pdf.

NVIDIA Multi-Instance =~ GPU (MIG), 2020.
URL https://www.nvidia.com/en-us/
technologies/multi-instance—-gpu/.

Multi-Process Service, June 2020. URL https:
//docs.nvidia.com/deploy/pdf/CUDA_
Multi_Process_Service_Overview.pdf.

Nvidia system management interface, Jan 2021.
URL https://developer.nvidia.com/
nvidia-system—management—-interface.

Nvidia management library (nvml), Jan 2021.
URL https://developer.nvidia.com/
nvidia-management-library-nvml.

He, K., Zhang, X., Ren, S., and Sun, J. Deep resid-
ual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, pp. 770-778. IEEE Computer Society, 2016. doi:
10.1109/CVPR.2016.90. URL https://doi.org/
10.1109/CVPR.2016.90.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Comput., 9(8):1735-1780, 1997. doi: 10.1162/
neco.1997.9.8.1735. URL https://doi.org/10.
1162/neco.1997.9.8.1735.

Jouppi, N. P, Young, C., Patil, N., Patterson, D. A., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., Boyle, R., Cantin, P., Chao, C., Clark, C., Coriell, J.,
Daley, M., Dau, M., Dean, J., Gelb, B., Ghaemmaghami,
T. V., Gottipati, R., Gulland, W., Hagmann, R., Ho, C. R.,
Hogberg, D., Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey,
A., Jaworski, A., Kaplan, A., Khaitan, H., Killebrew, D.,
Koch, A., Kumar, N., Lacy, S., Laudon, J., Law, J., Le,
D., Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,

G., Maggiore, A., Mahony, M., Miller, K., Nagarajan, R.,
Narayanaswami, R., Ni, R., Nix, K., Norrie, T., Omer-
nick, M., Penukonda, N., Phelps, A., Ross, J., Ross, M.,
Salek, A., Samadiani, E., Severn, C., Sizikov, G., Snel-
ham, M., Souter, J., Steinberg, D., Swing, A., Tan, M.,
Thorson, G., Tian, B., Toma, H., Tuttle, E., Vasudevan,
V., Walter, R., Wang, W., Wilcox, E., and Yoon, D. H.
In-datacenter performance analysis of a tensor process-
ing unit. In Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture, ISCA 2017,
Toronto, ON, Canada, June 24-28, 2017, pp. 1-12. ACM,
2017. doi: 10.1145/3079856.3080246. URL https:
//doi.org/10.1145/3079856.3080246.

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen,
E., Garcia, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training. In
6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Conference Track Proceedings. OpenRe-
view.net, 2018. URL https://openreview.net/
forum?id=rlgs9JgRZ.

Moussawi, A. Towards large scale training of autoencoders
for collaborative filtering. CoRR, abs/1809.00999, 2018.
URL http://arxiv.org/abs/1809.00999.

Narayanan, D., Santhanam, K., Kazhamiaka, F., Phan-
ishayee, A., and Zaharia, M. Heterogeneity-aware clus-
ter scheduling policies for deep learning workloads. In
14th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2020, Virtual Event, Novem-
ber 4-6, 2020, pp. 481-498. USENIX Association, 2020.
URL https://www.usenix.org/conference/
0sdi20/presentation/narayanan-deepak.

NVIDIA. Nsight compute user guide, a. URL https:
//docs.nvidia.com/nsight—-compute/
NsightCompute/index.html.

NVIDIA. Nsight systems user guide, b. URL https:
//docs.nvidia.com/nsight—-systems/
UserGuide/index.html.

NVIDIA. Nvidia apex (a pytorch extension), 2018. URL
https://nvidia.github.io/apex/1.

PyTorch. Automatic mixed precision package -
torch.cuda.amp, 2019. URL https://pytorch.
org/docs/stable/amp.html.

Sah, P. Improving GPU Utilization with Multi-
Process Service (MPS), 2015. URL https:
//on—demand.gputechconf.com/gtc/2015/
presentation/S5584-Priyanka—-Sah.pdf.

https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedoccupancy.htm
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://openreview.net/forum?id=r1gs9JgRZ
https://openreview.net/forum?id=r1gs9JgRZ
http://arxiv.org/abs/1809.00999
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://docs.nvidia.com/nsight-systems/UserGuide/index.html
https://nvidia.github.io/apex/l
https://pytorch.org/docs/stable/amp.html
https://pytorch.org/docs/stable/amp.html
https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf
https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf
https://on-demand.gputechconf.com/gtc/2015/presentation/S5584-Priyanka-Sah.pdf

CS/ME 759 Final Project: Cautiously Aggressive GPU Space Sharing for Improving Resource Utilization and Job Efficiency

Wang, G., Wang, K., Jiang, K., Li, X., and Sto-
ica, L Wavelet: Efficient DNN Training with
Tick-Tock Scheduling. In Proceedings of Ma-
chine Learning and Systems 3 pre-proceedings, April
2021. URL https://mlsys.org/Conferences/
2021/ScheduleMultitrack?event=1586.

Xiao, W., Bhardwaj, R., Ramjee, R., Sivathanu, M.,
Kwatra, N., Han, Z., Patel, P., Peng, X., Zhao, H.,
Zhang, Q., Yang, F., and Zhou, L. Gandiva: Introspec-
tive cluster scheduling for deep learning. In Arpaci-
Dusseau, A. C. and Voelker, G. (eds.), 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI 2018, Carlsbad, CA, USA, October
8-10, 2018, pp. 595-610. USENIX Association, 2018.
URL https://www.usenix.org/conference/
osdil8/presentation/xiao.

Yu, P. and Chowdhury, M. Fine-grained gpu sharing
primitives for deep learning applications. In Dhillon,
1., Papailiopoulos, D., and Sze, V. (eds.), Proceedings
of Machine Learning and Systems 2, volume 2, pp.
98-111, 2020. URL https://proceedings.
mlsys.org/paper/2020/file/
£7177163c833df£4b38£c8d2872flecb6-Paper.
pdf.

A REPLICATING THE RESULTS

The source code and instructions to reproduce all results in
this report are available at:

https://github.com/ruipeterpan/cs759-sp21

The Python package for interacting with NVIDIA MPS is
open-sourced at:

https://github.com/ruipeterpan/pymps

https://mlsys.org/Conferences/2021/ScheduleMultitrack?event=1586
https://mlsys.org/Conferences/2021/ScheduleMultitrack?event=1586
https://www.usenix.org/conference/osdi18/presentation/xiao
https://www.usenix.org/conference/osdi18/presentation/xiao
https://proceedings.mlsys.org/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf

